Oturum Aç

Distillation is a separation technique that takes advantage of the boiling point properties of disparate elements in a mixture. To perform distillation, we begin by heating a miscible mixture of two liquids with a significant difference in boiling points (at least 20°C). As the solution heats up and reaches the bubble point of the more volatile component, some molecules of the more volatile component transition into the gas phase and travel upward into the condenser, which is a glass tube with separate inner and outer sections. The vapor travels into the inner section of the condenser, where it is condensed to liquid by the cold water flowing in the outer section. This condensed vapor, the distillate, is collected in a graduated cylinder or test tube. As the distillation progresses, the composition of the distillate changes. The distillate is rich in the more volatile component in the early phases of distillation, becomes more evenly composed of the two components in the middle of distillation, and becomes dominated by the less volatile component near the end of distillation. The compositional change is accompanied by a rise in the temperature needed to boil the solution. The vapor-liquid equilibrium diagram shows the change in the composition of the liquid in the flask and that of the distillate over the distillation.

A vapor-liquid equilibrium diagram is a plot of the equilibrium temperature as a function of the mole fraction of the components of a binary mixture. The x-axis represents the mole fraction of either of the two components in the mixture, and the y-axis represents the temperature. These plots are available in the literature for common mixtures and can be used to determine the boiling points of a mixture according to the mole fractions.

They are also used to determine the composition of liquid and vapor at any given temperature during a distillation experiment. Determining the composition helps identify the temperature at which the distillation will end.

Etiketler
DistillationVapor liquid EquilibriumBubble PointVolatile ComponentCondenserDistillateVapor liquid Equilibrium DiagramBinary MixtureMole FractionBoiling Point

Bölümden 4:

article

Now Playing

4.2 : Distillation: Vapor–Liquid Equilibria

Introduction to Separation Methods

2.5K Görüntüleme Sayısı

article

4.1 : States of Matter and Phase Changes

Introduction to Separation Methods

832 Görüntüleme Sayısı

article

4.3 : Filtration

Introduction to Separation Methods

684 Görüntüleme Sayısı

article

4.4 : Centrifugation

Introduction to Separation Methods

1.9K Görüntüleme Sayısı

article

4.5 : Sublimation

Introduction to Separation Methods

651 Görüntüleme Sayısı

article

4.6 : Recrystallization: Solid–Solution Equilibria

Introduction to Separation Methods

956 Görüntüleme Sayısı

article

4.7 : Crystal Growth: Principles of Crystallization

Introduction to Separation Methods

1.3K Görüntüleme Sayısı

article

4.8 : Precipitation and Co-precipitation

Introduction to Separation Methods

1.5K Görüntüleme Sayısı

article

4.9 : Coagulation

Introduction to Separation Methods

226 Görüntüleme Sayısı

article

4.10 : Electrodeposition

Introduction to Separation Methods

349 Görüntüleme Sayısı

article

4.11 : Extraction: Partition and Distribution Coefficients

Introduction to Separation Methods

1.4K Görüntüleme Sayısı

article

4.12 : Extraction: Effects of pH

Introduction to Separation Methods

304 Görüntüleme Sayısı

article

4.13 : Extraction: Advanced Methods

Introduction to Separation Methods

280 Görüntüleme Sayısı

article

4.14 : Chromatography: Introduction

Introduction to Separation Methods

2.5K Görüntüleme Sayısı

article

4.15 : Dialysis

Introduction to Separation Methods

506 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır