Oturum Aç

A living cell's primary tasks of obtaining, transforming, and using energy to do work may seem simple. However, the second law of thermodynamics explains why these tasks are harder than they appear. None of the energy transfers in the universe are completely efficient. In every energy transfer, some amount of energy is lost in a form that is unusable. In most cases, this form is heat energy. Thermodynamically, heat energy is defined as the energy transferred from one system to another that is not work. For example, some energy is lost as heat energy during cellular metabolic reactions.

An important concept in physical systems is that of order and disorder. The more energy that is lost by a system to its surroundings, the less ordered and more random the system is. Scientists refer to the measure of randomness or disorder within a system as entropy. High entropy means high disorder and low energy. Molecules and chemical reactions have varying entropy as well. For example, entropy increases as molecules at a high concentration in one place diffuse and spread out.

Living things are highly ordered, requiring constant energy input to be maintained in a state of low entropy. As living systems take in energy-storing molecules and transform them through chemical reactions, they lose some amount of usable energy in the process because no reaction is completely efficient. They also produce waste and by-products that are not useful energy sources. This process increases the entropy of the system's surroundings. Since all energy transfers result in the loss of some usable energy, the second law of thermodynamics states that every energy transfer or transformation increases the entropy of the universe. Even though living things are highly ordered and maintain a state of low entropy, the entropy of the universe in total is constantly increasing due to the loss of usable energy with each energy transfer that occurs. Essentially, living things are in a continuous uphill battle against this constant increase in universal entropy.

This text is adapted from Openstax Biology 2e, Section 6.3 The Laws of Thermodynamics.

Etiketler

EntropyEnergy TransferThermodynamicsSecond Law Of ThermodynamicsDisorderOrderUsable EnergyHeat EnergyCellular MetabolismChemical ReactionsLiving SystemsUniversal Entropy

Bölümden 3:

article

Now Playing

3.4 : Entropy within the Cell

Enerji ve Kataliz

10.2K Görüntüleme Sayısı

article

3.1 : Termodinamiğin Birinci Yasası

Enerji ve Kataliz

5.3K Görüntüleme Sayısı

article

3.2 : Termodinamiğin İkinci Yasası

Enerji ve Kataliz

4.9K Görüntüleme Sayısı

article

3.3 : Hücre İçindeki Entalpi

Enerji ve Kataliz

5.7K Görüntüleme Sayısı

article

3.5 : Serbest Enerjiye Giriş

Enerji ve Kataliz

8.0K Görüntüleme Sayısı

article

3.6 : Hücrede Endergonik ve Ekzergonik Reaksiyonlar

Enerji ve Kataliz

14.2K Görüntüleme Sayısı

article

3.7 : Denge Bağlanma Sabiti ve Bağlanma Kuvveti

Enerji ve Kataliz

8.9K Görüntüleme Sayısı

article

3.8 : Serbest Enerji ve Denge

Enerji ve Kataliz

6.0K Görüntüleme Sayısı

article

3.9 : Hücrede Dengesizlik

Enerji ve Kataliz

4.1K Görüntüleme Sayısı

article

3.10 : Organik Moleküllerin Oksidasyonu ve İndirgenmesi

Enerji ve Kataliz

5.8K Görüntüleme Sayısı

article

3.11 : Enzimlere Giriş

Enerji ve Kataliz

16.7K Görüntüleme Sayısı

article

3.12 : Enzimler ve Aktivasyon Enerjisi

Enerji ve Kataliz

11.4K Görüntüleme Sayısı

article

3.13 : Enzim Kinetiğine Giriş

Enerji ve Kataliz

19.4K Görüntüleme Sayısı

article

3.14 : Devir Sayısı ve Katalitik Verimlilik

Enerji ve Kataliz

9.7K Görüntüleme Sayısı

article

3.15 : Katalitik Olarak Mükemmel Enzimler

Enerji ve Kataliz

3.8K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır