JoVE Logo

Oturum Aç

During the electron transport chain, electrons from NADH and FADH2 are first transferred to complexes I and II, respectively. These two complexes then transfer the electrons to ubiquinol, which carries them further to complex III. Complex III passes the electrons across the intermembrane space to Cyt c, which carries them further to complex IV. Complex IV donates electrons to oxygen and reduces it to water. As electrons pass through complexes I, III, and IV, the energy released aids the pumping of protons into the intermembrane space, creating a proton gradient. This proton gradient drives the synthesis of ATP from ADP and inorganic phosphate in complex V or ATP synthase and helps fulfill the cell's energy requirements.

Superoxide Generation in Complex III

The electron transport chain complexes located on the mitochondrial membrane are the major sites of non-enzymatic superoxide generation within a cell. These superoxides are the primary cause of cellular oxidative damage that underlies various degenerative diseases as well as aging. While complexes I and II generate superoxides within the mitochondrial matrix, complex III produces superoxides either inside the matrix or the intermembrane space.

The actual source of superoxides in complex III is the ubiquinone or Q cycle, where an unstable radical ubisemiquinone (Q-) is generated. This radical can donate its unpaired electron to oxygen to generate superoxide anions. Drugs such as stigmatellin obstruct the electron flux from ubiquinone to iron-sulfur proteins and prevents the oxidation of ubiquinone to ubisemiquinone, thereby diminishing the generation of superoxides. In contrast, drugs such as Antimycin A can increase the generation of superoxides within the Q-cycle by increasing the steady-state concentration of ubisemiquinone.

Complex IV acts as the Regulatory Center

Cytochrome c oxidase (COX) or Complex IV acts as the final oxygen accepting complex as well as the regulatory center of oxidative phosphorylation in eukaryotic cells. It is regulated through various mechanisms, including allosteric-ATP inhibition. When the cells' ATP/ADP ratio is high, the phosphorylated COX undergoes feedback inhibition by ATP. This allosteric inhibition helps sense the cells' energy levels and adjust ATP synthesis in the mitochondria according to the energy demand.

Etiketler

Electron Transport ChainComplex IIIComplex IVNADHFADH2UbiquinolCyt COxygenATP SynthaseSuperoxideOxidative DamageDegenerative DiseasesAgingUbisemiquinoneStigmatellinAntimycin ACytochrome C OxidaseAllosteric ATP InhibitionATP ADP Ratio

Bölümden 19:

article

Now Playing

19.7 : Electron Transport Chain: Complex III and IV

Mitokondri ve Enerji Üretimi

6.7K Görüntüleme Sayısı

article

19.1 : Mitokondri

Mitokondri ve Enerji Üretimi

8.9K Görüntüleme Sayısı

article

19.2 : Mitokondriyal Membranlar

Mitokondri ve Enerji Üretimi

6.6K Görüntüleme Sayısı

article

19.3 : İç Mitokondriyal Zar

Mitokondri ve Enerji Üretimi

3.2K Görüntüleme Sayısı

article

19.4 : Sitrik Asit Döngüsü: Genel Bakış

Mitokondri ve Enerji Üretimi

15.7K Görüntüleme Sayısı

article

19.5 : Sitrik Asit Döngüsü: Çıktı

Mitokondri ve Enerji Üretimi

7.3K Görüntüleme Sayısı

article

19.6 : Elektron Taşıma Zinciri: Kompleks I ve II

Mitokondri ve Enerji Üretimi

9.6K Görüntüleme Sayısı

article

19.8 : ATP Sentaz: Mekanizma

Mitokondri ve Enerji Üretimi

13.7K Görüntüleme Sayısı

article

19.9 : Elektron Taşıma Zinciri

Mitokondri ve Enerji Üretimi

15.8K Görüntüleme Sayısı

article

19.10 : Crista Zarındaki Süper Kompleksler

Mitokondri ve Enerji Üretimi

2.4K Görüntüleme Sayısı

article

19.11 : ATP Sentaz: Yapı

Mitokondri ve Enerji Üretimi

11.8K Görüntüleme Sayısı

article

19.12 : ADP/ATP Taşıyıcı Protein

Mitokondri ve Enerji Üretimi

3.1K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır