JoVE Logo

Oturum Aç

14.22 : Space-Time Curvature and the General Theory of Relativity

In 1905, Albert Einstein published his special theory of relativity. According to this theory, no matter in the universe can attain a speed greater than the speed of light in a vacuum, which thus serves as the speed limit of the universe.

This has been verified in many experiments. However, space and time are no longer absolute. Two observers moving relative to one another do not agree on the length of objects or the passage of time. The mechanics of objects based on Newton's laws of motion, although remarkably accurate even for speeds of many thousands of miles per second, begin to fail when the relative motion between objects approaches the speed of light in a vacuum. Moreover, the special theory of relativity reveals a fundamental limitation of Newton's laws.

According to Newton's laws of motion and Newton's law of gravitation, all actions happen instantaneously. Since Einstein's special theory of relativity states there is a speed limit in the universe, such instantaneous action happening over a finite distance is not fundamentally possible.

In 1915, Einstein proposed a solution to this problem in the general theory of relativity, in which he formalized the principle of equivalence in mathematical terms. According to the theory, gravitation is not a force between two objects; instead, it is an effect of the two objects on the space-time around them, which in turn determines their dynamics.

In the special and general theories of relativity, space and time are treated on an equal footing. The curvature is not of space alone but of the combined entity ‘space-time.'

For weak gravitational fields, the results of general relativity do not differ significantly from Newton's law of gravitation. However, for intense gravitational fields, the results diverge, and general relativity has been shown to predict the correct results. These effects have been observed in our Sun's relatively weak gravitational field at the distance of Mercury's orbit. Since the mid-1800s, Mercury's elliptical orbit has been carefully measured. However, although it is elliptical, its motion is complicated by the fact that the perihelion position of the ellipse slowly advances. Most of the advance is due to the gravitational pull of other planets, but a small portion of that advancement could not be accounted for by Newton's laws. There was even a search for a “companion” planet that would explain the discrepancy at one time. However, general relativity correctly predicts the measurements.

This text is adapted from Openstax, University Physics Volume 1, Section 13.7: Einstein's Theory of Gravity.

Etiketler

Space time CurvatureGeneral Theory Of RelativitySpecial Theory Of RelativityAlbert EinsteinSpeed Of LightNewton s LawsGravitational FieldsPrinciple Of EquivalenceGravitational PullMercury s OrbitElliptical OrbitDynamicsSpace time Equality

Bölümden 14:

article

Now Playing

14.22 : Space-Time Curvature and the General Theory of Relativity

Kütle Çekimi

2.6K Görüntüleme Sayısı

article

14.1 : Yerçekimi

Kütle Çekimi

6.0K Görüntüleme Sayısı

article

14.2 : Newton'un Yerçekimi Yasası

Kütle Çekimi

11.8K Görüntüleme Sayısı

article

14.3 : Küresel simetrik kütleler arasındaki yerçekimi

Kütle Çekimi

814 Görüntüleme Sayısı

article

14.4 : Küresel Cisimler Arasındaki Yerçekimi

Kütle Çekimi

8.1K Görüntüleme Sayısı

article

14.5 : Azaltılmış Kütle Koordinatları: İzole İki Cisim Problemi

Kütle Çekimi

1.2K Görüntüleme Sayısı

article

14.6 : Dünyadaki Yerçekimi Nedeniyle İvme

Kütle Çekimi

10.4K Görüntüleme Sayısı

article

14.7 : Diğer Gezegenlerde Yerçekimi Nedeniyle İvme

Kütle Çekimi

4.0K Görüntüleme Sayısı

article

14.8 : Görünür Ağırlık ve Dünya'nın Dönüşü

Kütle Çekimi

3.5K Görüntüleme Sayısı

article

14.9 : Dünya Yüzeyine Yakın Yerçekimi Nedeniyle İvmedeki Değişim

Kütle Çekimi

2.3K Görüntüleme Sayısı

article

14.10 : Yerçekiminden Kaynaklanan Potansiyel Enerji

Kütle Çekimi

5.1K Görüntüleme Sayısı

article

14.11 : Süperpozisyon İlkesi ve Yerçekimi Alanı

Kütle Çekimi

1.2K Görüntüleme Sayısı

article

14.12 : Kurtulma hızı

Kütle Çekimi

5.1K Görüntüleme Sayısı

article

14.13 : Uydular için Dairesel Yörüngeler ve Kritik Hız

Kütle Çekimi

2.8K Görüntüleme Sayısı

article

14.14 : Dairesel yörüngedeki bir uydunun enerjisi

Kütle Çekimi

2.1K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır