Oturum Aç

Near absolute zero temperatures, in the presence of a magnetic field, the majority of nuclei prefer the lower energy spin-up state to the higher energy spin-down state. As temperatures increase, the energy from thermal collisions distributes the spins more equally between the two states. The Boltzmann distribution equation gives the ratio of the number of spins predicted in the spin −½ (N) and spin +½ (N+) states.

Figure1

Here, ΔE is the energy difference between the states, k is the Boltzmann constant (1.38 × 10−23 J·K−1), and T is the absolute temperature measured in kelvins. The energy difference can be expressed as hν, where h is Planck’s constant (6.626 × 10−34 J·s) and ν is the operating frequency of the NMR instrument.

Figure2

For example, in an instrument operating at 60 MHz at 298 K, the ratio is slightly less than 1 (0.999991), implying that the lower energy state has approximately 9 to 10 excess nuclei in a total population of about 2,000,000 nuclei. The excess population is small but significant, as these spins are responsible for the net magnetization that produces the NMR signal. Using a higher operating frequency increases the energy gap between the spin states and the excess population.

Etiketler

Atomic NucleiNuclear SpinSpin State PopulationMagnetic FieldThermal CollisionsBoltzmann DistributionEnergy DifferenceBoltzmann ConstantAbsolute TemperaturePlanck s ConstantNMR InstrumentExcess NucleiNet MagnetizationOperating Frequency

Bölümden 7:

article

Now Playing

7.5 : Atomic Nuclei: Nuclear Spin State Population Distribution

Principles of Nuclear Magnetic Resonance

877 Görüntüleme Sayısı

article

7.1 : Nuclear Magnetic Resonance (NMR): Overview

Principles of Nuclear Magnetic Resonance

1.7K Görüntüleme Sayısı

article

7.2 : Atomic Nuclei: Nuclear Spin

Principles of Nuclear Magnetic Resonance

1.4K Görüntüleme Sayısı

article

7.3 : Atomic Nuclei: Nuclear Magnetic Moment

Principles of Nuclear Magnetic Resonance

965 Görüntüleme Sayısı

article

7.4 : Atomic Nuclei: Nuclear Spin State Overview

Principles of Nuclear Magnetic Resonance

781 Görüntüleme Sayısı

article

7.6 : Atomic Nuclei: Larmor Precession Frequency

Principles of Nuclear Magnetic Resonance

947 Görüntüleme Sayısı

article

7.7 : Atomic Nuclei: Magnetic Resonance

Principles of Nuclear Magnetic Resonance

581 Görüntüleme Sayısı

article

7.8 : Atomic Nuclei: Nuclear Relaxation Processes

Principles of Nuclear Magnetic Resonance

571 Görüntüleme Sayısı

article

7.9 : Atomic Nuclei: Types of Nuclear Relaxation

Principles of Nuclear Magnetic Resonance

210 Görüntüleme Sayısı

article

7.10 : NMR Spectrometers: Overview

Principles of Nuclear Magnetic Resonance

919 Görüntüleme Sayısı

article

7.11 : NMR Spectrometers: Radiofrequency Pulses and Pulse Sequences

Principles of Nuclear Magnetic Resonance

664 Görüntüleme Sayısı

article

7.12 : NMR Spectrometers: Resolution and Error Correction

Principles of Nuclear Magnetic Resonance

581 Görüntüleme Sayısı

article

7.13 : Diamagnetic Shielding of Nuclei: Local Diamagnetic Current

Principles of Nuclear Magnetic Resonance

773 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır