Oturum Aç

The two-way ANOVA is an extension of the one-way ANOVA. It is a statistical test performed on three or more samples categorized by two factors - a row factor and a column factor. Ronald Fischer mentioned it in 1925 in his book 'Statistical Methods for Researchers.'

The two-way ANOVA analysis initially begins by stating the null hypothesis that there is an interaction effect between the two factors of a dataset. This effect can be visualized using line segments formed by joining the means for each factor. If the line segments are not parallel, an interaction between the two factors exists. In other words, the two factors simultaneously affect the values in a given dataset. If the two lines are parallel, then no interaction effect is observed. Calculating the F statistic for interaction effect can confirm this graphical representation. If the calculated P-value of the F statistic is greater than a specific significance level (for example, P-value = 0.05), one can fail to reject the null hypothesis.

Next, the effect of each factor on the data values is determined. In other words, it is checked if either the row factor or the column factor affects the data in the dataset. This is done by separately stating the null hypothesis and calculating the F statistic for each factor. If the P-value computed from the F statistic of a specific factor is lower than a chosen significance level (for example, P-value = 0.05), then that factor is said to affect the data values in a given dataset significantly.

Etiketler
Two Way ANOVAOne way ANOVAStatistical TestFactorsInteraction EffectNull HypothesisF StatisticP valueSignificance LevelDataset AnalysisGraphical RepresentationRow FactorColumn Factor

Bölümden 10:

article

Now Playing

10.7 : Two-Way ANOVA

Varyans Analizi

2.5K Görüntüleme Sayısı

article

10.1 : ANOVA nedir?

Varyans Analizi

6.6K Görüntüleme Sayısı

article

10.2 : Tek Yönlü ANOVA

Varyans Analizi

6.8K Görüntüleme Sayısı

article

10.3 : Tek Yönlü ANOVA: Eşit Örnek Boyutları

Varyans Analizi

3.1K Görüntüleme Sayısı

article

10.4 : Tek Yönlü ANOVA: Eşit Olmayan Örnek Boyutları

Varyans Analizi

5.6K Görüntüleme Sayısı

article

10.5 : Çoklu Karşılaştırma Testleri

Varyans Analizi

3.7K Görüntüleme Sayısı

article

10.6 : Bonferroni Testi

Varyans Analizi

2.5K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır