JoVE Logo

Oturum Aç

13.15 : Wald-Wolfowitz Runs Test I

The Wald-Wolfowitz test, also known as the runs test, is a nonparametric statistical test used to assess the randomness of a sequence of two different types of elements (e.g., positive/negative values, successes/failures). It examines whether the order of the elements in a sequence is random or if there is a pattern or trend present. This nonparametric test applies to any ordered data despite the population and sample data distribution, even if a higher sample size is available.

The test works by analyzing "runs" in the data—continuous sequences of similar elements. A "run" is defined as a series of consecutive identical symbols (e.g., a run of positive values or a run of negative values). The Wald-Wolfowitz test compares the observed number of runs to the number of runs expected under randomness. Consider the following example for the sequence or run:

Dataset-1:

0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1

In this dataset, the [0, 0]; [1, 1, 1]; [0, 0, 0]; [1]; [0]; [1]; [0, 0, 0]; [1, 1]; [0, 0]; [1, 1] are the recognizable sequences or runs, for a total of 10 runs. As 0 and 1 are different in nature (i.e., they provide different information, e.g., absence and presence), 0 and 1 together cannot form a run. This means that [0, 1]; [0, 1] cannot be considered as a run.

The basic principle of the WWR test is "Reject the randomness of the data when the number of runs is extremely low or extremely high". The test provides a quantitative measure of randomness at a certain level of significance, for instance, 0.05. The WWR test alone, however, does not offer any clear indication of how random a given dataset is. The magnitude of randomness is still qualitative and needs to be interpreted based on the nature of the data (i.e., binary, categorical, or numerical).

Etiketler

Wald Wolfowitz TestRuns TestNonparametric Statistical TestRandomness AssessmentOrdered DataRuns AnalysisDataset ExampleQuantitative MeasureSignificance LevelData Interpretation

Bölümden 13:

article

Now Playing

13.15 : Wald-Wolfowitz Runs Test I

Nonparametric Statistics

599 Görüntüleme Sayısı

article

13.1 : Introduction to Nonparametric Statistics

Nonparametric Statistics

658 Görüntüleme Sayısı

article

13.2 : Ranks

Nonparametric Statistics

225 Görüntüleme Sayısı

article

13.3 : Introduction to the Sign Test

Nonparametric Statistics

667 Görüntüleme Sayısı

article

13.4 : Sign Test for Matched Pairs

Nonparametric Statistics

96 Görüntüleme Sayısı

article

13.5 : Sign Test for Nominal Data

Nonparametric Statistics

69 Görüntüleme Sayısı

article

13.6 : Sign Test for Median of Single Population

Nonparametric Statistics

86 Görüntüleme Sayısı

article

13.7 : Wilcoxon Signed-Ranks Test for Matched Pairs

Nonparametric Statistics

84 Görüntüleme Sayısı

article

13.8 : Wilcoxon Signed-Ranks Test for Median of Single Population

Nonparametric Statistics

93 Görüntüleme Sayısı

article

13.9 : Wilcoxon Rank-Sum Test

Nonparametric Statistics

147 Görüntüleme Sayısı

article

13.10 : Bootstrapping

Nonparametric Statistics

580 Görüntüleme Sayısı

article

13.11 : The Anderson-Darling Test

Nonparametric Statistics

654 Görüntüleme Sayısı

article

13.12 : Spearman's Rank Correlation Test

Nonparametric Statistics

668 Görüntüleme Sayısı

article

13.13 : Kendall's Tau Test

Nonparametric Statistics

585 Görüntüleme Sayısı

article

13.14 : Kruskal-Wallis Test

Nonparametric Statistics

551 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır