JoVE Logo

Oturum Aç

28.2 : Magnetic Fields

A moving charge or a current creates a magnetic field in the surrounding space, in addition to its electric field. The magnetic field exerts a force on any other moving charge or current that is present in the field. Like an electric field, the magnetic field is also a vector field. At any position, the direction of the magnetic field is defined as the direction in which the north pole of a compass needle points.

A magnetic field is defined by the force that a charged particle experiences moving in that field. The magnitude of this magnetic force is proportional to the amount of charge, Q, the speed of the charged particle, v, and the magnitude of the applied magnetic field, B. The direction of this force is perpendicular to both the direction of the moving charged particle and the direction of the applied magnetic field. Based on these observations, we define the magnetic field strength based on the magnetic force on a charge, Q, moving at a certain velocity as the cross-product of the velocity and the magnetic field:

Lorentz force equation \( \vec{F} = Q \vec{v} \times \vec{B} \), illustrating electromagnetism principles.

This equation defines the magnetic field with respect to the force on the motion of a charged particle. The magnitude of the force is determined from the definition of the cross-product as it relates to the magnitudes of each of the vectors. In other words, the magnitude of the force satisfies the following equation:

Magnetic force equation, F=QvBsinθ, formula related to motion of charges in magnetic fields.

where θ is the angle between the velocity and the magnetic field.

The SI unit for magnetic field strength is called the tesla (T) after the eccentric but brilliant inventor Nikola Tesla (1856–1943):

Magnetic field strength unit formula, 1 Tesla equals 1 Newton per Ampere meter, physics equation.

A non-SI magnetic field unit in common use is called the gauss (G) and is related to the Tesla through the following conversion:

Magnetic field conversion formula 1G=10^-4T, showing unit equivalence in magnetic studies.

There is no magnetic force on static charges. However, there is a magnetic force on charges moving at an angle to a magnetic field. When charges are stationary, their electric fields do not affect magnets. However, when charges move, they produce magnetic fields that exert forces on other magnets. When there is relative motion, a connection between electric and magnetic forces emerges, with each affecting the other.

Etiketler

Magnetic FieldMoving ChargeElectric FieldVector FieldMagnetic ForceCharge QVelocity vMagnetic Field StrengthTesla TGauss GCross productCharged ParticleElectromagnetic Interaction

Bölümden 28:

article

Now Playing

28.2 : Magnetic Fields

Manyetik Kuvvetler ve Alanlar

5.9K Görüntüleme Sayısı

article

28.1 : Manyetizma

Manyetik Kuvvetler ve Alanlar

6.2K Görüntüleme Sayısı

article

28.3 : Manyetik Alan Çizgileri

Manyetik Kuvvetler ve Alanlar

4.0K Görüntüleme Sayısı

article

28.4 : Manyetik Akı

Manyetik Kuvvetler ve Alanlar

3.5K Görüntüleme Sayısı

article

28.5 : Yüklü Bir Parçacığın Manyetik Alandaki Hareketi

Manyetik Kuvvetler ve Alanlar

4.5K Görüntüleme Sayısı

article

28.6 : Manyetik Kuvvet

Manyetik Kuvvetler ve Alanlar

891 Görüntüleme Sayısı

article

28.7 : Akım Taşıyan İletken Üzerindeki Manyetik Kuvvet

Manyetik Kuvvetler ve Alanlar

4.0K Görüntüleme Sayısı

article

28.8 : Akım Taşıyan Teller Üzerindeki Manyetik Kuvvet: Örnek

Manyetik Kuvvetler ve Alanlar

1.4K Görüntüleme Sayısı

article

28.9 : Manyetik Alanda Bir Akım Döngüsüne Uygulanan Kuvvet

Manyetik Kuvvetler ve Alanlar

3.2K Görüntüleme Sayısı

article

28.10 : Manyetik Alanda Bir Akım Döngüsündeki Tork

Manyetik Kuvvetler ve Alanlar

3.8K Görüntüleme Sayısı

article

28.11 : Salon Etkisi

Manyetik Kuvvetler ve Alanlar

2.2K Görüntüleme Sayısı

article

28.12 : Thomson'ın e/m Deneyi

Manyetik Kuvvetler ve Alanlar

3.2K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır