The self-inductance of a circuit, often simply called the inductance, is a purely geometric factor that depends only on the circuit component's structure. More specifically, it depends on the shape and size of the component that lets the flux pass through it, thus inducing an electric field that opposes any current passing through it.

Since the effect of the induced electric field and the back EMF generated depends on the rate of change of current and the self-inductance, the inductance calculation for specific geometries is required.

The strategy is to start from the magnetic field, integrate it over the area through which it passes to derive the flux, and then add up all the independent fluxes to derive the total flux. Since inductance is defined as the ratio of the total flux and the current, its formula is derived by evaluating the ratio.

For an ideal solenoid, a cylindrical toroid, and a rectangular toroid, the magnetic field is derived by assuming no edge effects; the field is assumed to be uniform inside it. In practice, this assumption is not valid. However, if the total length of the solenoid or toroid is much larger than its radius and cross-sectional area, the correction introduced is small and negligible.

It is also assumed that no magnetic field leakage is outside the system's geometry. This is also not strictly valid but approximately correct if the total length is much larger than the respective cross-sectional area.

The self-inductance of a solenoid, a cylindrical toroid, and a rectangular toroid are evaluated under these assumptions. It is noted that since each loop has the same flux passing through it and the different loops are independent, each loop contributes the same amount to the total flux. This observation throws up a factor of N2 in the formula for self-inductance. The other factors depend on the dimensions.

As a result, it is noted that whatever the dimensions, the self-inductance of a looped coil of wire can be increased by simply increasing the number of turns.

A corollary of this observation is that the self-inductance of a standard current-carrying loop of wire is much smaller than that of the coiled systems. Hence, the inductance of a standard current-carrying wire is negligible compared to inductors used as separate circuit components.

Etiketler
Self inductanceInductance CalculationMagnetic FieldTotal FluxElectric FieldBack EMFSolenoidCylindrical ToroidRectangular ToroidFlux IntegrationLooped CoilTurnsCurrent carrying Wire

Bölümden 31:

article

Now Playing

31.3 : Calculation of Self-inductance

Endüktans

181 Görüntüleme Sayısı

article

31.1 : Karşılıklı Endüktans

Endüktans

2.1K Görüntüleme Sayısı

article

31.2 : Kendinden Endüktans

Endüktans

2.2K Görüntüleme Sayısı

article

31.4 : İndüktörler

Endüktans

5.2K Görüntüleme Sayısı

article

31.5 : Manyetik Alanda Enerji

Endüktans

2.1K Görüntüleme Sayısı

article

31.6 : Koaksiyel Kabloda Depolanan Enerji

Endüktans

1.3K Görüntüleme Sayısı

article

31.7 : RL Devreleri

Endüktans

2.3K Görüntüleme Sayısı

article

31.8 : RL Devrelerinde Akım Büyümesi ve Bozulması

Endüktans

3.3K Görüntüleme Sayısı

article

31.9 : RL ve RC devreleri arasında karşılaştırma

Endüktans

3.4K Görüntüleme Sayısı

article

31.10 : LC Devreleri

Endüktans

2.2K Görüntüleme Sayısı

article

31.11 : Bir LC Devresindeki Salınımlar

Endüktans

2.0K Görüntüleme Sayısı

article

31.12 : RLC Serisi Devreler

Endüktans

2.5K Görüntüleme Sayısı

article

31.13 : Sönümlü Osilatör Olarak RLC Devresi

Endüktans

724 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır