Oturum Aç

An alternator converts mechanical energy into electrical energy that varies sinusoidally, resulting in AC current. Meanwhile, a DC generator converts mechanical energy into electrical energy, which are DC pulses with the same polarity. The construction of a DC generator is similar to that of an alternator, except that the pair of slip rings is replaced by a single split ring, also called a commutator. The commutator functions like a periodic rotary switch; it changes the contacts with the brushes for each half rotation of the conducting loop, ensuring that the induced emf always has the same polarity.

The basic working principle of DC generators is based on Faraday's law of induction. The conducting loop is rotated inside the uniform magnetic field, and this rotation changes the magnetic flux passing through the loop periodically. When the conducting loop is connected to the external circuit, the changing magnetic flux induces an emf, which results in an induced current. The connection to the external circuit is envisioned using a commutator and a pair of brushes.

The magnitude of the induced emf is maximum when the magnetic flux through the conducting loop is zero and minimum when the magnetic flux through the conducting loop is either maximum or minimum. The magnetic flux has positive and negative values, but the induced emf has the same polarity and fluctuates between zero and maximum. The average of the induced emf is calculated by taking the average value of the sinusoidally varying component. The magnitude of the induced emf can be increased by increasing the applied uniform magnetic field, the conducting loop's area, and the rotation's angular velocity.

Etiketler
DC GeneratorAlternatorMechanical EnergyElectrical EnergyAC CurrentDC PulsesCommutatorBrushesFaraday s Law Of InductionMagnetic FluxInduced EmfExternal CircuitConducting LoopMagnetic FieldAngular Velocity

Bölümden 30:

article

Now Playing

30.17 : DC Generator

Elektromanyetik İndüksiyon

592 Görüntüleme Sayısı

article

30.1 : Indüksiyon

Elektromanyetik İndüksiyon

3.7K Görüntüleme Sayısı

article

30.2 : Faraday Yasası

Elektromanyetik İndüksiyon

3.7K Görüntüleme Sayısı

article

30.3 : Lenz Yasası

Elektromanyetik İndüksiyon

3.3K Görüntüleme Sayısı

article

30.4 : Hareketli Emf

Elektromanyetik İndüksiyon

3.0K Görüntüleme Sayısı

article

30.5 : Faraday Disk Dinamosu

Elektromanyetik İndüksiyon

1.9K Görüntüleme Sayısı

article

30.6 : İndüklenen Elektrik Alanları

Elektromanyetik İndüksiyon

3.4K Görüntüleme Sayısı

article

30.7 : İndüklenen Elektrik Alanları: Uygulamalar

Elektromanyetik İndüksiyon

1.4K Görüntüleme Sayısı

article

30.8 : Girdap Akımları

Elektromanyetik İndüksiyon

1.4K Görüntüleme Sayısı

article

30.9 : Deplasman Akımı

Elektromanyetik İndüksiyon

2.7K Görüntüleme Sayısı

article

30.10 : Yer Değiştirme Akımının Önemi

Elektromanyetik İndüksiyon

4.2K Görüntüleme Sayısı

article

30.11 : Elektromanyetik Alanlar

Elektromanyetik İndüksiyon

2.0K Görüntüleme Sayısı

article

30.12 : Maxwell'in Elektromanyetizma Denklemi

Elektromanyetik İndüksiyon

2.9K Görüntüleme Sayısı

article

30.13 : Maxwell Denklemlerinde Simetri

Elektromanyetik İndüksiyon

3.1K Görüntüleme Sayısı

article

30.14 : Ampere-Maxwell Yasası: Problem Çözme

Elektromanyetik İndüksiyon

438 Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır