JoVE Logo

Oturum Aç

7.4 : Internal Loadings in Structural Members: Problem Solving

When designing or analyzing a structural member, it is important to consider the internal loadings developed within the member. These internal loadings include normal force, shear force, and bending moment. Engineers can ensure that the structural member can support the applied external forces by calculating these internal loadings.

To illustrate this, let's consider a beam OC of 5 kN, inclined at an angle of 53.13° with the horizontal and supported at both ends. Determine the internal loadings at point A.

Equation 1

For this, first, we need to calculate the reaction force at point C. We can do this by using the moment equation about point O and substituting the values.

Equation 1

This gives us the necessary information to determine the reaction force at point C in the horizontal direction, which is 1.87 kN.

Next, the weight of the beam, which is assumed to be acting at the center, is resolved into its components. Once we have calculated the reaction force at point C and resolved the weight of the beam, we can move on to determining the internal loadings at point A.

To accomplish this, consider an imaginary line passing through point A, dividing the beam into two sections. Then, a free-body diagram of the segment with the minimum unknown forces is drawn. By recalling the equilibrium equation and substituting the values of forces along the horizontal direction, the normal force in the section is obtained to be -5.12 kN. The negative sign indicates that the normal force on the cross-section is opposite to the direction assumed.

Similarly, by using the equilibrium equation and substituting the values of the vertical forces, we can determine the shear force in the section, which is 1.5 kN. Finally, using the moment equation, we can determine the magnitude of the moment at point A, which is obtained to be 8.94 kNᐧm.

By following these steps, the internal loadings at point A of the structural member can be determined. This problem-solving process is crucial for ensuring structural members can withstand the forces they are designed to support.

Etiketler

Internal LoadingsStructural MemberNormal ForceShear ForceBending MomentReaction ForceEquilibrium EquationFree body DiagramProblem solving ProcessStructural AnalysisBeam DesignApplied External Forces

Bölümden 7:

article

Now Playing

7.4 : Internal Loadings in Structural Members: Problem Solving

İç Kuvvetler

1.2K Görüntüleme Sayısı

article

7.1 : Sözleşmeyi İmzala

İç Kuvvetler

1.9K Görüntüleme Sayısı

article

7.2 : Normal ve Kesme Kuvveti

İç Kuvvetler

2.0K Görüntüleme Sayısı

article

7.3 : Eğilme ve burulma momentleri

İç Kuvvetler

3.5K Görüntüleme Sayısı

article

7.5 : Kiriş

İç Kuvvetler

1.3K Görüntüleme Sayısı

article

7.6 : Kesme Diyagramı

İç Kuvvetler

731 Görüntüleme Sayısı

article

7.7 : Eğilme Momenti Diyagramı

İç Kuvvetler

974 Görüntüleme Sayısı

article

7.8 : Dağıtılmış yük ve kesme arasındaki ilişki

İç Kuvvetler

595 Görüntüleme Sayısı

article

7.9 : Kesme ve eğilme momenti arasındaki ilişki

İç Kuvvetler

965 Görüntüleme Sayısı

article

7.10 : Kesme ve Eğilme Momenti Diyagramı: Problem Çözme

İç Kuvvetler

1.3K Görüntüleme Sayısı

article

7.11 : Konsantre yüklere maruz kalan kablo

İç Kuvvetler

787 Görüntüleme Sayısı

article

7.12 : Dağıtılmış bir yüke maruz kalan kablo

İç Kuvvetler

622 Görüntüleme Sayısı

article

7.13 : Kendi ağırlığına maruz kalan kablo

İç Kuvvetler

419 Görüntüleme Sayısı

article

7.14 : Kablo: Problem Çözme

İç Kuvvetler

307 Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır