Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Method Article
This paper reports the nanomaterial fabrication of a fullerene Si substrate inspected and verified by nanomeasurements and molecular dynamic simulation.
Bu çalışma, bir dizi tasarlanmış Cı 84 Si substratı Gömülü bir ultra yüksek vakum odası içinde kontrollü bir kendi kendine montaj yöntemi kullanılarak imal bildirir. C 84 özellikleri, bu tür atom çözünürlüklü topoğrafya, devletlerin yerel elektronik yoğunluk, bant boşluk enerjisine, saha emisyon özelliklerinin, nanomekanik sertliği ve yüzey manyetizma olarak, Si yüzey Gömülü ultra altında yüzey analiz teknikleri kullanarak çeşitli incelendi yüksek vakum (UHV) koşullarının yanı sıra bir atmosfer sistemi. Deneysel sonuçlar C 84 yüksek tekdüzelik Si yüzey kontrollü bir öz-montaj nanoteknoloji mekanizmasını kullanarak, kesme aletleri alan emisyon ekran (FED), optoelektronik cihaz imalat, MEMS uygulanmasında önemli bir gelişmeyi temsil fabrikasyon Gömülü ve çabaları göstermek karbür yarı iletkenler için uygun bir yedek bulmak için. Yarı deneysel potansiyeli olan moleküler dinamik (MD) yöntemi olabilir bC 84 nanoindentation incelemek için kullanılan e Si substrat Gömülü. MD simülasyonunu yapmak için ayrıntılı bir açıklama sunulmuştur. Böyle girinti kuvveti, Young modülü, yüzey sertliği, atom stres ve atomik suşu olarak MD simülasyon mekanik analiz üzerine kapsamlı bir çalışma için ayrıntılar yer almaktadır. girinti modeli atom stres ve von Mises-gerinme dağılımları atomlarla düzeyde zaman değerlendirme ile deformasyon mekanizmasını izlemek için hesaplanabilir.
Fulleren moleküller ve nedeniyle mükemmel yapısal özellikler, elektronik iletkenlik, mekanik mukavemet ve kimyasal özellikleri 1-4'e de nano arasındaki ayırt edici ihtiva kompozit malzemeler. Bu malzemeler elektronik, bilgisayar, yakıt hücresi teknolojisi, güneş pilleri ve saha emisyon teknolojisi 5,6 gibi alanlarda, bir dizi son derece yararlı olduğu kanıtlanmıştır.
Bu malzemeler arasında, silisyum karbür (SiC) nanoparçacık kompozitler, geniş bant boşluğu, yüksek ısı iletkenliği ve istikrar, yüksek elektrik arıza yeteneği, ve kimyasal eylemsizlik özellikle dikkat sayesinde aldık. Bu faydalar optoelektronik cihazlar özellikle açıktır, metal oksit yarıiletken alan etkili transistörler (MOSFET), ışık yayan diyotlar (LED'ler) ve yüksek güç, yüksek frekans ve yüksek sıcaklık uygulamaları. Bununla birlikte, yüksek yoğunluklu kusurları yaygın Sözleşmenin yüzeyinde görülenÖnal silisyum karbür bile cihaz arızası 7,8 giden, elektronik yapısı üzerinde zararlı etkileri olabilir. SiC uygulaması 1960 yılından beri çalışılmıştır gerçeğine rağmen, bu özel çözümlenmemiş sorun olmaya devam etmektedir.
Bu çalışmanın amacı, bir C 84 fabrikasyon sonuçlanan malzemelerin, elektronik optoelektronik, mekanik, manyetik, ve alan emisyon özelliklerinin kapsamlı bir anlayış elde etmek için Si substrat heteroeklem ve sonraki analizlere Gömülü oldu. Biz de moleküler dinamik hesaplamaları yeni uygulaması ile, nanomateryallerin özelliklerini tahmin etmek sayısal simülasyonu kullanarak sorunu ele.
NOT: Kağıt, bir yarı iletken alt-tabaka yüzeyi üzerinde bir kendi kendini monte fulleren dizisinin oluşturulmasında kullanılan yöntem açıklar. Özel olarak, yüksek olduğu kadar mikro elektro mekanik sistemlerin (MEMS) ve yüksek sıcaklık, yüksek güçlü optoelektronik aygıtlar, uygulamalar bir alan vericisi veya alt-tabaka olarak kullanım için fulleren gömülü silikon alt-tabakanın hazırlanması için yeni bir yöntem mevcut -Frekans cihazları 9-13.
1. Fabrikasyon altıgen kapalı ambalajlı (HCP) overlayer C 84 Si Yüzey üzerinde
C 84 Elektronik Özelliklerinin 2. Ölçümler Si Maddesini Gömülü
Yüzey Manyetizma 3. Ölçümler
AFM tarafından Nanomekanik Özelliklerinin 4. Ölçümü
NOT: Atomik kuvvet mikroskobu (AFM) sağlayan birmikro de malzemenin ve mekanik özellikleri ve hava nano ölçekler karakterizasyonu için hem de UHV ortamında güçlü bir araçtır
MD Simulation tarafından Nanomekanik Özelliklerinin 5. Ölçüm
NOT: simülasyon bölümünde, OVITO 16 (açık kaynak visualizatiyazılım üzerinde) ve OSSD 17 (Açık yüzey yapısı veritabanı) simülasyon modeli ve sonuçları görselleştirme oluşturmak için kullanılır. LAMMPS 14 (açık kaynak moleküler dinamik (MD) simülasyon paketi) nanoindentation simülasyon gerçekleştirmek ve simülasyon 15 sonuçlarını analiz için kullanılır. Tüm simülasyon işleri Gelişmiş Büyük ölçekli Paralel Üstkümesi'nin NCHC ait (ALPS) paralel hesaplama ile yapılmaktadır.
NOT: MD simülasyon kullanarak C 84 tek tabaka / Si substrat heteroeklem incelemek için, bir Si alt tabaka içine gömülü rahat bir C 84 tek tabaka elde etmek için birkaç adımda bir simülasyon modeli hazırlamalıdır. Çünkü Cı 84 tek ve Si (111) substrat hetero arasındaki iç yapısının kompleks, deneysel verilerden, bir tam olarak aynı yapı oluşturmanın zor olduğuna dikkat edin. Sonuç olarak, prosedür birkaç adımda simülasyon modeli oluşturmak için yapay bir şekilde kullanmak,bu, Şekil 5 'de gösterilmiştir. detayları aşağıdaki protokoller açıklanmıştır. Biz LAMMPS içinde MD parametresi, bir alt tabaka içine gömülü rahat bir C 84 fulleren tek tabaka kurmak, bir girinti yordamı gerçekleştirmek ve simülasyon sonuçlarını analiz nasıl kurulum açıklar.
. Düzensiz Si (111) yüzeyi üzerinde Cı 84 moleküllerinin bir tek-tabakalı Şekil 1, bir UHV odasında kontrollü kendini montaj işlemi kullanılarak imal içerisinde değişik derecelerde UHV-STM tarafından ölçülen topografik görüntüleri bir dizi gösterilmektedir: (a) 0.01 mL, (b) 0.2 mL, (c) 0.7 mi, ve (d) 0.9 ml. C 84 gömülü Si substrat elektronik ve optik özellikleri aynı zamanda STM ve PL (Şekil 2) gibi yüzey analiz teknikleri, çeşitli k...
Bu çalışmada, (Şekil 1), yeni bir tavlama işlemi ile Si alt-tabaka üzerinde Cı 84 bir kendi kendine bir araya tek tabaka imalat göstermektedir. Bu işlem, nanopartikül gömülü iletken yüzeyler başka türlü hazırlamak için de kullanılabilir. C 84 Si substrat UHV-STM (Şekil 2), saha emisyon spektrometresi, foto-ışıldama spektroskopisi, MFM ve SQUID (Şekil 3) kullanılarak atomik ölçekte karakterize edildi Gömülü.
...Yazarlar ifşa hiçbir şey yok.
The authors would like to thank the Ministry of Science and Technology of Taiwan, for their financial support of this research under Contract Nos. MOST-102-2923-E-492- 001-MY3 (W. J. Lee) and NSC-102- 2112-M-005-003-MY3 (M. S. Ho). Support from the High-performance Computing of Taiwan in providing huge computing resources to facilitate this research is also gratefully acknowledged.
Name | Company | Catalog Number | Comments |
Silicon wafer | Si(111). Type/Dopant: P/Boron; Resistivity: 0.05-0.1 Ohm·cm | ||
Carbon, C84 | Legend Star | C84 powder, 98% | |
Hydrochloric acid | Sigma-Aldrich | 84422 | RCA, 37% |
Ammonium | Choneye Pure Chemical | RCA, 25% | |
Hydrogen peroxide | Choneye Pure Chemical | RCA, 35% | |
Nitrogen | Ni Ni Air | high-pressure bottle, 95% | |
Tungsten | Nilaco | 461327 | wire, diameter 0.3 mm, tip |
Sodium hydroxide | UCW | 85765 | etching Tungsten wire for tip |
Acetone | Marcon Fine Chemicals | 99920 | suitable for liquid chromatography and UV-spectrophotometry |
Methanol | Marcon Fine Chemicals | 64837 | suitable for liquid chromatography and UV-spectrophotometry |
UHV-SPM | JEOL Ltd | JSPM-4500A | Ultrahigh Vacuum Scanning Tunneling Microscope and Ultrahigh Vacuum Atomic Force Microscope |
Power supply | Keithley | 237 | High-Voltage Source-Measure Unit |
SQUID | Quantum desigh | MPMS-7 | Magnetic field strength: ±7.0 Tesla, Temperature range: 2–400 K, Magnetic-dipole range: 5 × 10-7 – 300 emu |
ALPS | National Center for High-performance Computing, Taiwan | Advanced Large-scale Parallel Supercluster, 177Tflops; 25,600 CPU cores; 73,728 GB RAM; 1,074 TB storage |
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır