Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Method Article
XY-Meta ve metaX'i birbirine entegre eden hedefsiz bir metabolomik iş akışı oluşturduk. Bu protokolde, açık erişim spektrumu referansından bir aldatmaca spektral kütüphanesi oluşturmak için XY-Meta'nın nasıl kullanılacağını gösterdik ve daha sonra FDR kontrolünü gerçekleştirdik ve metabolomik spektrumları tanımladıktan sonra metabolitleri ölçmek için metaX'i kullandık.
Hedefsiz metabolomik teknikler son yıllarda yaygın olarak kullanılmaktadır. Bununla birlikte, hızla artan verim ve numune sayısı, kütle spektrometresi spektrumlarının kalite kontrolü için zorluklar yaratan muazzam miktarda spektrum yaratmaktadır. Yanlış pozitifleri azaltmak için, yanlış keşif oranı (FDR) kalite kontrolü gereklidir. Son zamanlarda, XY-Meta adlı bir Target-Decoy stratejisine dayanan hedefsiz metabolom tanımlamasının FDR kontrolü için bir yazılım geliştirdik. Burada, XY-Meta ve metaX'i birbirine entegre eden eksiksiz bir analiz boru hattı gösterdik. Bu protokol, mevcut bir referans veritabanından bir aldatmaca veritabanı oluşturmak ve açık erişimli bir veri kümesinde büyük ölçekli metabolom tanımlaması için Target-Decoy stratejisini kullanarak FDR denetimi gerçekleştirmek için XY-meta'nın nasıl kullanılacağını gösterir. Diferansiyel analiz ve metabolitler ek açıklaması, metabolitlerin tepe noktaları tespiti ve kantitasyonu için metaX çalıştırıldıktan sonra gerçekleştirildi. Daha fazla araştırmacıya yardımcı olmak amacıyla, biyoinformatik becerilerine veya herhangi bir bilgisayar diline ihtiyaç duymadan bu analizler için kullanıcı dostu bir bulut tabanlı analiz platformu geliştirdik.
Metabolitler biyolojik süreçlerde önemli roller oynar. Metabolitler genellikle enerji transferi, hormon düzenlemeleri, nörotransmiterlerin düzenlenmesi, hücresel iletişim ve protein post-translasyonel modifikasyonları gibi çeşitli süreçlerin düzenleyicileridir 1,2,3,4. Hedeflenmemiş metabolomik, çok sayıda metabolitin küresel bir görünümünü sağlar 5,6. Kütle spektrometresi ve kromatografi teknolojilerindeki ilerlemelerle birlikte, metabolom MS / MS spektrumlarının verimi son yıllarda hızla artmaktadır 7,8,9,10,11. Bu büyük veri kümelerinden metabolitleri tanımlamak için, MZmine 12, MS-FINDER 13, CFM-ID14, MetFrag15 ve SLAW 16 gibi çeşitli ek açıklama yazılımlarıgeliştirildi. Bununla birlikte, bu tanımlamalar genellikle birçok yanlış pozitif içerir. Nedenleri şunlardır: (1) MS / MS spektrumları, tepe eşleşmesini yanlış yönlendirebilecek rastgele gürültü içerir. (2) İzomerler ve parçalanma enerjilerindeki farklılıklar çoklu spektrum parmak izlerine neden olur ve böylece referans kütüphanesinin hacmini arttırır. (3) Referans kütüphanelerinin kalitesi farklılık gösterir. İyi bir referans spektral kütüphanesi oluşturmak için uygun bir standarda ihtiyaç vardır. Bu nedenle, fonksiyonel metabolom araştırması için hedeflenmemiş metabolomikler için sistematik bir yanlış keşif hızı (FDR) kontrolü gereklidir 7,8,9,17.
Hem Ampirik Bayes yaklaşımı hem de Target-Decoy stratejisi genel olarak FDR kontrol problemini ele aldı. Kerstin Scheubert ve ark., parçalanma ağacı tabanlı yöntemden oluşturulan aldatmaca veritabanındaki Target-Decoy stratejisinin FDR kontrol9 için en iyi yöntem olduğunu göstermiştir. Xusheng Wang ve ark., kimyadaki sekizli kurala dayanan aldatıcı üretim için bir yöntem tasarladılar ve FDR tahmini17'nin hassasiyetini geliştirdiler. Daha iyi performans için tuzak veritabanı oluşturmak için spektral kütüphanegösterilmiştir 18. Burada, spektral kütüphane tabanlı yöntemi geliştirdik ve FDR tahmininin hassasiyetini daha da artırabilecek XY-Meta19 adlı bir yazılım geliştirdik. Target-Decoy şeması altında FDR kontrolü için bir aldatmaca kütüphanesi oluşturmak için mevcut referans spektral kütüphanesini kullanır. XY-Meta kendi spektrum eşleştirme ve kosinüs benzerlik algoritmalarını destekler. Geleneksel arama ve yinelemeli arama modlarına izin verir. FDR değerlendirmesi adımında, Target-Decoy birleştirilmiş modunu ve ayrılmış modu destekler. Daha iyi esneklik için, XY-Meta harici aldatmaca kütüphanelerini kabul eder.
Metabolitlerin pik tespiti ve nicelleştirilmesi de hedefsiz metabolom analizinin önemli bir adımıdır. Pik tespiti, metabolom tanımlaması için ana yöntemdir. Genel olarak, metabolitlerin pik tespitinin doğruluğu, kütle spektrometrisinin gürültü sinyalleri, metabolitlerin düşük bolluğu, kirleticiler ve metabolitlerin bozunma ürünleri gibi birçok faktörden etkilenmiştir20. Numune sayısı çok fazla olduğunda veya sıvı kromatografi sütunu hedefsiz metabolom deneylerinde değiştirildiğinde, metabolom kantitasyonu21,22,23 için büyük bir zorluk olan olağanüstü parti etkileri ortaya çıkabilir. Şu anda, XCMS 24, Workflow4Metabolomic25, iMet-Q26 ve metaX19 gibi yazılımlar, hedeflenmemiş metabolomun en yüksek tespitini ve niceliğini gerçekleştirebilir, ancak metaX'in boru hattının daha eksiksiz ve kullanımı daha kolay olmasını öneririz. Burada, XY-Meta kullanarak genel kullanıma açık bir veri kümesi msv000084112 için tanımlama ve FDR kontrolü sürecini ve metaX kullanarak metabolitlerin tepe noktası tespitini ve niceliğini gösteriyoruz. Bu iş akışı yalnızca iki grup gerektirir ve her grubun en az iki örneği olması gerekir. MS / MS spektrum verileri, kütle spektrometresi platformu, iyonizasyon modu, şarj modu ve numune türünden bağımsız olarak gereklidir ve numune tabanlı normalleştirmeyi ve tepe tabanlı normalleştirmeyi destekleyebilir. Bu örneği takiben, araştırmacılar metabolomik tanımlama ve nicelemeyi kullanımı kolay bir şekilde gerçekleştirebilirler. Bu işlem hattını kullanmak için R programlama yeteneği gerekir. Herhangi bir programlama bilgisi olmayan araştırmacıya yardımcı olmak için, metabolomik analiz için bir bulut analiz platformu da geliştirdik. Bu bulut analiz platformunu Ek Materyal 5'te gösterdik.
Access restricted. Please log in or start a trial to view this content.
1. Metabolomik veri kümelerini analiz için hazırlama
NOT: Bu gösterimde, QC örneği olmayan metabolomik veri kümelerini kullanıyoruz. Servis talebi ve kontrol grupları için verilere ihtiyaç vardır. Gösterim için, GNPS veritabanı27'de genel bir veri kümesi kullanıyoruz.
2. Veri biçimi dönüştürme
NOT: Veri kümesi doğrudan kütle spektrometresinden oluşturulan ham veriyse, genellikle .raw, .wiff veya .cdf biçimindedir. mzXML ve mgf formatlarına dönüştürülmelidirler. Burada, format dönüştürmeyi yapmak için ProteoWizard29 paketindeki msconvert aracını kullanıyoruz.
3. Metabolitler için referans spektral kütüphanesini hazırlama
NOT: XY-meta, referans spektral kütüphanelerini yalnızca mgf formatında destekler.
4. Metabolitlerin tanımlanması ve FDR kontrolü
5. Diferansiyel analiz
NOT: metaX açık kaynaklı bir R paketidir. Lütfen https://github.com/wenbostar/metaX'daki kılavuza göre yükleyin. Bu analiz için 8GB RAM gereklidir.
6. Nitel ve nicel sonuçların entegrasyonu
Access restricted. Please log in or start a trial to view this content.
msv000084112'nin ham verileri msconvert.exe tarafından dönüştürüldü ve mgf dosyaları (Ek Malzeme S6) oluşturuldu.
XY-Meta, /database klasörü altında GNPS-NIST14-MATCHES_Decoy.mgf dosyası oluşturdu. Bu, orijinal referans spektral kütüphanesi GNPS-NIST14-MATCHES.mgf'den oluşturulan aldatmaca kütüphanesidir. Bu aldatmaca kütüphanesi yeniden kullanılabilir. Bu aldatma kitaplığını yeniden kullanırken, kullanıcı parametre.default dosyasında decoy_patter...
Access restricted. Please log in or start a trial to view this content.
Hedeflenmemiş metabolitlerin FDR kontrolü büyük bir zorluk olmuştur. Burada, FDR kontrolü ile büyük ölçekli hedefsiz metabolomik analizin (nitel ve kantitatif) eksiksiz bir boru hattını gösterdik. Bu, MS analizinde çok yaygın olan yanlış pozitifleri etkili bir şekilde azaltır.
Çalışmanız için uygun bir referans spektral kütüphanesi hazırlamak kilit bir noktadır. Başarılı ve hassas bir MS/MS tanımlaması sadece uygun eşleştirme algoritmalarını değil, aynı z...
Access restricted. Please log in or start a trial to view this content.
Çıkar çatışması yok.
Bu çalışma, Ulusal Anahtar Araştırma ve Geliştirme Programı (2018YFC0910200/2017YFA0505001) ve Guangdong Anahtar Ar-Ge Programı (2019B020226001) tarafından desteklenmektedir.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
GNPS | open source | n/a | https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp |
XY-Meta | open source | n/a | https://github.com/DLI-ShenZhen/XY-Meta |
metaX | open source | n/a | https://github.com/wenbostar/metaX |
ProteoWizard | Free Download | 3.0.22116.18c918b-x86_64 | https://proteowizard.sourceforge.io/download.html |
CHI.Client | Free Download | ndp48-x86-x64-allos-enu | http://www.chi-biotech.com/technology.html?ty=ypt |
Access restricted. Please log in or start a trial to view this content.
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır