Source: Michael G. Benton and Kerry M. Dooley, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA
Dryers are utilized in numerous industrial processes. The function of a dryer is to use heat transfer processes to dry solids. A variety of dryer types exist. Adiabatic dryers use convection and direct contact with gases to dry solids, whereas non-adiabatic dryers use methods other than heated gas contact to dry1, including conduction, radiation, and radio frequency drying1. Dryers can be used for batch processes or they be in continuous use1.
In this experiment, the effects of temperature and air velocity on the drying rate of sand will be determined using a tray dryer. Three different power settings (1000 W, 1500 W and 2500 W) for two different air flow rates will be tested, providing a total of six data sets. From this data, the heat and mass transfer coefficients can be calculated.
Tray dryers are one type of batch dryer, which also include fluidized-bed dryers, freeze dryers and vacuum dryers. Tray dryers use convective heat transfer to flow heated air over solids to dry them. They are used by a variety of industries including for the production of pharmaceuticals and other chemicals1. Continuous dryers on the other hand are common to large volume product industries, such as the food industry1.
To begin the process in a typical tray dryer, the tray is filled evenly with a wet solid, such as sand, and loaded into the apparatus. The dryer’s adjustable fan and heater allow for continuous variations in air flow rate from the fan through the drying channel, and heat duty variations in 500 watt increments. As the dryer operates, water evaporates from the sand into the air. The drying rate is then calculated by weighing the initial solid/water mixture and subtracting the weight of the final dry solid and at various timed intervals.
Heat transfer is driven by the temperature difference between the sand and the surrounding air. A simplified Newton’s Law of Heating (Equation 1) can be used to model the heat transfer between the heated air and sand-air interface to obtain an experimental heat transfer coefficient. Other heat duty terms are negligible compared to the term in Equation 1,
Equation 1
where q is the heat transferred, ṁ is the water evaporated in an allotted amount of time or rate of evaporation, ∆Hvap is the enthalpy of vaporization, hy is the heat transfer coefficient, Tair is the air temperature, and Ts is the sand’s surface temperature.
In order to obtain an experimental mass transfer coefficient, the transfer of water from sand to air will be modeled as mass transfer flowing across a true phase boundary. The drying rate equation (Equation 2) is this model.
Equation 2
where ky is the mass transfer coefficient, C is the concentration of water, and A is the surface area of the boundary. Concentrations of water in the sand (Cs) and air (C∞) will be obtained by using a mass balance and psychrometric charts, respectively. These are used to solve for the drying rate.
Theoretical values can be compared to the experimental data by calculating heat and mass transfer coefficients. The theoretical heat (Equation 3) and mass (Equation 4) transfer coefficients are obtained from the properties of the substances involved from correlations.
Equation 3
Equation 4
where Re is the Reynolds number, Pr is the Prandtl number, Sc is the Schmidt number, DAB is the diffusivity of water in air, L is the length, and k is thermal conductivity.
The experiment will consist of four runs, each testing a different combination of one of two fan and heat settings.
1. Tray Dryer Operation
From the data collected, the following information can be obtained. Use psychrometric charts to determine the absolute humidity, which gives the concentration of water present in the air. The heat transfer coefficients can be calculated using the measured temperatures and Equation 1. And finally, the change in mass of the wet sand can be used to calculate the concentration of water in the sand.
The moisture content of sand decreased linearly over time. As expected, the evaporation rate was found to increase with larger flow rate and heat duty. According to their equations, both heat and mass transfer coefficients are directly proportional to the evaporation rate at the sand-air interface. Theoretical values of heat and mass transfer coefficients were found to have a strong positive correlation with a R2 of 99%. The experimental values only showed a weak correlation after testing.
The relationships between air flow and evaporation rate and between temperature and evaporation rate both increased linearly (Figure 1, Figure 2). Increased air flow (Figure 1) and increased temperature (Figure 2) both increased the evaporation rate. These graphs show that when air flow or temperature increase and the other variable is held constant, the evaporation rate will increase at an equivalent rate and follow a positive linear trend. The air flow variation test was a measure of convective heat transfer, while the temperature variation test was a measure of conductive heat transfer. The sum of the two tests shows that both convective and conductive heat transfer follow a linear relationship with evaporation rate.
Figure 1: Depiction of the relationship between air velocity and evaporation rate, which increased linearly.
Figure 2: Depiction of the relationship between temperature and evaporation rate, which increased linearly.
There are many sources of error in the measurements with the greatest sources for error being the relative humidity and temperature of the air-sand interface. Also, the air velocity effect on the weight of the tray was deemed unimportant but it is a source of error. Some of this error may have also reduced the correlation of the heat and mass transfer coefficients. These coefficients were calculated theoretically and proven to be correlated. However, the experimental data did not show a significant trend, despite being theoretically similar.
A tray dryer was used to measure the drying rate of sand with respect to convective and conductive heat transfer. Using the dryer at three different power levels and two different flow rates, six experimental data sets were found. Measurements were taken by weighing the sand/water mixture at five minute intervals.
This experiment made use of Newton’s Law of Heating, drying rate modeling, and heat and mass transfer modeling. Heat and mass transfer coefficients were determined with the use of a boundary layer model. Theoretically, the heat and mass transfer coefficients show a very strong positive linear correlation. Even though the experimental results showed a positive trend as well, the data was too inaccurate to display any significant correlation between the two.
Tray-drying can be used in a variety of fields. One such field is pharmaceuticals. In pharmaceuticals, tray dryers are used to dry many different base materials, including sticky, granular, and crystalline materials2. Many plastics used in pharmaceuticals can be dried in tray dryers2. Additionally, precipitates, pastes, and other wet masses can be dried with a tray dryer, along with crude drugs, chemicals, powders, and tablet granules. Even some equipment is dried in the dryers2. Tray dryers offer many advantages to this industry, since they are used for batches, which can vary in size and be handled without losses2. The dryers are also readily adjusted to accompany other materials in an efficient manner2. In some cases, tray dryers in a vacuum are used to dry heat sensitive products like vitamins2.
Tray dryers are also used in food processing3. Food can be spread out thinly and evenly onto the trays for drying3. Depending on the type of food, drying can be performed by heating with air moving across the trays, conduction from heated trays or shelves, or radiation form other heated surfaces3. Air can be used with the additional benefit of removing moist vapors, though this can be a problem for some foods3.
Atla...
Bu koleksiyondaki videolar:
Now Playing
Chemical Engineering
43.8K Görüntüleme Sayısı
Chemical Engineering
17.8K Görüntüleme Sayısı
Chemical Engineering
32.3K Görüntüleme Sayısı
Chemical Engineering
9.6K Görüntüleme Sayısı
Chemical Engineering
10.0K Görüntüleme Sayısı
Chemical Engineering
36.4K Görüntüleme Sayısı
Chemical Engineering
87.9K Görüntüleme Sayısı
Chemical Engineering
77.4K Görüntüleme Sayısı
Chemical Engineering
48.3K Görüntüleme Sayısı
Chemical Engineering
9.6K Görüntüleme Sayısı
Chemical Engineering
24.1K Görüntüleme Sayısı
Chemical Engineering
18.8K Görüntüleme Sayısı
Chemical Engineering
16.0K Görüntüleme Sayısı
Chemical Engineering
30.1K Görüntüleme Sayısı
Chemical Engineering
7.3K Görüntüleme Sayısı
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır