JoVE Logo
Faculty Resource Center

Sign In

0:00

Overview

1:02

Considerations for the Specialized Injections

3:40

Intracardiac Injection

6:54

Retro Orbital Injection

8:39

Footpad Injection

10:07

Applications

11:21

Summary

Compound Administration IV

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

There are many commonly used routes for compound administration in laboratory mice and rats. Protocols may, however, require the use of the less commonly used routes: intracardiac, footpad, and retro-orbital injections. Specialized training is essential for these procedures to be performed successfully. Justification for these routes may need to be provided to gain Institutional Animal Care and Use Committee (IACUC) approval.

1. Intracardiac injection

  1. Landmarks and positioning: Position the mouse or rat either in right lateral recumbency (with the left side facing upward) or in dorsal recumbency, and identify the landmarks.
    1. Position the heart approximately level with the point of the elbow and just to the left of the sternum.
    2. Insert the needle between the ribs at the point of the elbow.
    3. In an animal in dorsal recumbency, insert the needle into the chest parallel to the table.
    4. In an anim

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The administration of compounds into animals can have a significant effect on both the wellbeing of the animal and the outcome of the experimental data and scientific value. The proper method of delivery is essential to the success of the experiment. Many factors must be considered to determine the best route, including the scientific aim of the study, the pH of the substance, the required dosage volume, the viscosity of the substance, and the wellbeing of the animals. Technical expertise is also a requirement for all in

Log in or to access full content. Learn more about your institution’s access to JoVE content here

  1. Morton, D.A., Jennings, M., Buckwell, A., Ewbank, R., Godfrey, C., Holgate, B., Inglis, I., James, R., Page, C., Sharman, I., Verschoyle, R., Westall, L., and Wilson, A.B. 2001. Refining procedures for the administration of substances Report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Members of the Joint Working Group on Refinement. Laboratory Animals. 35. 1-41
  2. Prendiville , T.W., Qing, M., Lin, Z., Zhou, P., He, A., and Pu, W.T. 2014. Ultrasound-guided Transthoracic Intramyocardial Injection in Mice. Journal of Visualized Experiments. 90 | e51566.
  3. Yardeni, T., Eckhaus, M., Morris, H.D., Huizing, M., and Hoogstraten-Miller, S. 2001. Retro-orbital injection in mice. Lab Animal. 40:5. 155-171.
  4. Steel, C., Stephens, A., Hahto, S., Singletary, S., Ciavarra, R. 2008. Comparison of the lateral tail vein and the retro-orbital sinus as routes of intravenous drug delivery in a transgenic mouse model. Lab Anim. 37. 26-31.
  5. Timm, K.I. 1989. Orbital venous anatomy of the Mongolian gerbil, with comparison to the mouse, hamster, and rat. Laboratory Animal Science. 39:3. 262-265.
  6. Kamala, T. 2007. Hock immunization: a humane alternative to mouse footpad injections. Journal of Immunological Methods. 328. 204-214.

-- Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved