Source: Ali Bazzi, Department of Electrical Engineering, University of Connecticut, Storrs, CT.
DC power is unidirectional and flows in one direction, whereas, AC current alternates directions at a frequency of 50-60 Hz. Most common electronic devices are designed to run off of AC power; therefore an input DC source must be inverted to AC. Inverters convert DC voltage to AC through switching action that repeatedly flips the polarity of the input DC source at the output or load side for part of a switching period. A typical power inverter requires a stable DC power input, which is then switched repeatedly using mechanical or electromagnetic switches. The output can be a square-wave, sine-wave or a variation of a sine-wave, depending on circuit design and the user needs.
The objective of this experiment is to build and analyze the operation of DC/AC half-bridge inverters. Half-bridge inverters are the simplest form of DC/AC inverters, but are the building blocks for H-bridge, three-phase, and multi-level inverters. Square-wave switching is studied here for simplicity, but sinusoidal pulse width modulation (SPWM) and other modulation and switching schemes are typically used in DC/AC inverters.
Inverters consist of switching devices (one, two, four, six, or more) that are switched in a manner that converts a DC input voltage to AC. The switches are typically MOSFETs, IGBTs, SCRs, or others.
The half-bridge inverter provides an AC output voltage with a maximum of Vin/2, while the full bridge inverter can achieve a maximum of Vin. The half-bridge inverter requires two capacitors in parallel with the DC input to split the input into two halves, each at Vin/2 in a manner similar to a voltage divider, while the full-bridge does not have this requirement. The half-bridge rectifier uses two switches, while the full-bridge uses four switches.
Many advanced inverter topologies, switching schemes, and controllers exist in the power electronics literature, but the half-bridge is the most fundamental building block of most of them. In a half-bridge inverter, the input DC source is split into two halves using two identical capacitors of equal capacitance. The inverter then can tie the output to +Vdc/2 when the upper inverter switch is on, and to -Vdc/2 when the lower inverter switch is on. Both switches should not be on at the same time, and dead time when both are off should added using hardware or software circuitry.
1. Switching Source Setup
2. Half-Bridge Inverter
Figure 1: Half-Bridge Setup
It is expected from building this half-bridge inverter that the output voltage waveform is a square-wave with a maximum of Vdc/2 and a minimum of -Vdc/2 with some dead-time causing the output voltage to be zero for around 4% of the switching period.
Square-wave inverters have high total harmonic distortion (THD) and are rarely used in real applications, however, they are the building blocks of many more advanced inverters with better switching schemes, e.g. SPWM, that can provide more sinusoidal-like output voltages. This not only improves the THD, but also reduces filtering requirements for undesired harmonics in the output voltage except for the fundamental harmonic, e.g. at 50 or 60 Hz.
Inverters are very common in interfacing clean energy sources, e,g, solar photovoltaics, fuel cells, wind turbines, as well as with energy storage systems, e.g. batteries, with the grid. They are essential in uninterruptable power supplies (UPS systems), in micro-grids with clean energy penetration, and in hybrid and electric transportation systems. Among the main applications of inverters is in motor drives where motor control can be provided by adjusting the inverter switching patterns to achieve desired speed and/or torque.
Skip to...
Videos from this collection:
Now Playing
Electrical Engineering
17.9K Views
Electrical Engineering
144.5K Views
Electrical Engineering
15.0K Views
Electrical Engineering
12.4K Views
Electrical Engineering
56.7K Views
Electrical Engineering
21.1K Views
Electrical Engineering
13.2K Views
Electrical Engineering
20.1K Views
Electrical Engineering
23.4K Views
Electrical Engineering
17.4K Views
Electrical Engineering
23.3K Views
Electrical Engineering
11.6K Views
Electrical Engineering
6.9K Views
Electrical Engineering
21.5K Views
Electrical Engineering
14.2K Views
Copyright © 2025 MyJoVE Corporation. All rights reserved