Sign In

7.14 : The Aufbau Principle and Hund's Rule

To determine the electron configuration for any particular atom, we can build the structures in the order of atomic numbers. Beginning with hydrogen, and continuing across the periods of the periodic table, we add one proton at a time to the nucleus and one electron to the proper subshell until we have described the electron configurations of all the elements. This procedure is called the aufbau principle, from the German word aufbau (“to build up”). Each added electron occupies the subshell of lowest energy available, subject to the limitations imposed by the allowed quantum numbers according to the Pauli exclusion principle. Electrons enter higher-energy subshells only after lower-energy subshells have been filled to capacity. Figure 1 illustrates the traditional way to remember the filling order for atomic orbitals. 

Figure1

Figure 1 This diagram depicts the energy order for atomic orbitals and is useful for deriving ground-state electron configurations.

Consider writing the electron configuration for carbon—an element with atomic number six. Four electrons fill the 1s and 2s orbitals. The remaining two electrons occupy the 2p subshell. We now have a choice of filling one of the 2p orbitals and pairing the electrons or of leaving the electrons unpaired in two different, but degenerate, p orbitals. The orbitals are filled as described by Hund’s rule: the lowest-energy configuration for an atom with electrons within a set of degenerate orbitals is that having the maximum number of unpaired electrons. Thus, the two electrons in the carbon 2p orbitals have identical n, l, and ms quantum numbers and differ in their ml quantum number (in accord with the Pauli exclusion principle). The orbital diagram for carbon, with an electron configuration of 1s22s21p2 is: 

Figure2

Nitrogen (atomic number 7) fills the 1s and 2s subshells and has one electron in each of the three 2p orbitals, in accordance with Hund’s rule. These three electrons have unpaired spins. Oxygen (atomic number 8) has a pair of electrons in any one of the 2p orbitals (the electrons have opposite spins) and a single electron in each of the other two. Fluorine (atomic number 9) has only one 2p orbital containing an unpaired electron. All of the electrons in the noble gas neon (atomic number 10) are paired, and all of the orbitals in the n = 1 and the n = 2 shells are filled. 

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms.

Tags
Aufbau PrincipleHund s RuleAtomic OrbitalsSubshellsElectron DistributionLowest energy ConfigurationS OrbitalsD OrbitalsElectron ConfigurationCarbon1s Orbital2s Orbital2p SubshellDegenerate Orbitals

From Chapter 7:

article

Now Playing

7.14 : The Aufbau Principle and Hund's Rule

Electronic Structure of Atoms

33.6K Views

article

7.1 : The Wave Nature of Light

Electronic Structure of Atoms

45.9K Views

article

7.2 : The Electromagnetic Spectrum

Electronic Structure of Atoms

50.4K Views

article

7.3 : Interference and Diffraction

Electronic Structure of Atoms

26.6K Views

article

7.4 : Photoelectric Effect

Electronic Structure of Atoms

28.0K Views

article

7.5 : The Bohr Model

Electronic Structure of Atoms

45.4K Views

article

7.6 : Emission Spectra

Electronic Structure of Atoms

45.0K Views

article

7.7 : The de Broglie Wavelength

Electronic Structure of Atoms

24.3K Views

article

7.8 : The Uncertainty Principle

Electronic Structure of Atoms

20.6K Views

article

7.9 : The Quantum-Mechanical Model of an Atom

Electronic Structure of Atoms

38.7K Views

article

7.10 : Quantum Numbers

Electronic Structure of Atoms

31.4K Views

article

7.11 : Atomic Orbitals

Electronic Structure of Atoms

29.8K Views

article

7.12 : The Pauli Exclusion Principle

Electronic Structure of Atoms

29.5K Views

article

7.13 : The Energies of Atomic Orbitals

Electronic Structure of Atoms

22.5K Views

article

7.15 : Electron Configuration of Multielectron Atoms

Electronic Structure of Atoms

33.2K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved