Sign In

6.2 : Replication in Eukaryotes

Overview

In eukaryotic cells, DNA replication is highly conserved and tightly regulated. Multiple linear chromosomes must be duplicated with high fidelity before cell division, so there are many proteins that fill specialized roles in the replication process. Replication occurs in three phases: initiation, elongation, and termination, and ends with two complete sets of chromosomes in the nucleus.

Many Proteins Orchestrate Replication at the Origin

Eukaryotic replication follows many of the same principles as prokaryotic DNA replication, but because the genome is much larger and the chromosomes are linear rather than circular, the process requires more proteins and has a few key differences. Replication occurs simultaneously at multiple origins of replication along each chromosome. Initiator proteins recognize and bind to the origin, recruiting helicase to unwind the DNA double helix. At each point of origin, two replication forks form. Primase then adds short RNA primers to the single strands of DNA, which serve as a starting point for DNA polymerase to bind and begin copying the sequence. DNA can only be synthesized in the 5’ to 3’ direction, so replication of both strands from a single replication fork proceeds in two different directions. The leading strand is synthesized continuously, while the lagging strand is synthesized in short stretches 100-200 base pairs in length, called Okazaki fragments. Once the bulk of replication is complete, RNase enzymes remove the RNA primers and DNA ligase joins any gaps in the new strand.

Dividing the Work of Replication among Polymerases

The workload of copying DNA in eukaryotes is divided among multiple different types of DNA polymerase enzymes. Major families of DNA polymerases across all organisms are categorized by the similarity of their protein structures and amino acid sequences. The first families to be discovered were termed A, B, C, and X, with families Y and D identified later. Family B polymerases in eukaryotes include Pol α, which also functions as a primase at the replication fork, and Pol δ and ε, the enzymes that do most of the work of DNA replication on the leading and lagging strands of the template, respectively. Other DNA polymerases are responsible for such tasks as repairing DNA damage,copying mitochondrial and plastid DNA, and filling in gaps in the DNA sequence on the lagging strand after the RNA primers are removed.

Telomeres Protect the Ends of the Chromosomes from Degradation

Because eukaryotic chromosomes are linear, they are susceptible to degradation at the ends. To protect important genetic information from damage, the ends of chromosomes contain many non-coding repeats of highly conserved G-rich DNA: the telomeres. A short single-stranded 3’ overhang at each end of the chromosome interacts with specialized proteins, which stabilizes the chromosome within the nucleus. Because of the manner in which the lagging strand is synthesized, a small amount of the telomeric DNA cannot be replicated with each cell division. As a result, the telomeres gradually get shorter over the course of many cell cycles and they can be measured as a marker of cellular aging. Certain populations of cells, such as germ cells and stem cells, express telomerase, an enzyme that lengthens the telomeres, allowing the cell to undergo more cell cycles before the telomeres shorten.

Tags
ReplicationEukaryotes

From Chapter 6:

article

Now Playing

6.2 : Replication in Eukaryotes

DNA Replication

166.8K Views

article

6.1 : Replication in Prokaryotes

DNA Replication

48.1K Views

article

6.3 : DNA Base Pairing

DNA Replication

26.1K Views

article

6.4 : The DNA Replication Fork

DNA Replication

33.4K Views

article

6.5 : Proofreading

DNA Replication

11.7K Views

article

6.6 : Lagging Strand Synthesis

DNA Replication

44.9K Views

article

6.7 : DNA Helicases

DNA Replication

19.8K Views

article

6.8 : The Replisome

DNA Replication

30.5K Views

article

6.9 : Mismatch Repair

DNA Replication

8.6K Views

article

6.10 : DNA Topoisomerases

DNA Replication

28.9K Views

article

6.11 : Telomeres and Telomerase

DNA Replication

21.4K Views

article

6.12 : Non-nuclear Inheritance

DNA Replication

3.9K Views

article

6.13 : Animal Mitochondrial Genetics

DNA Replication

7.0K Views

article

6.14 : Comparing Mitochondrial, Chloroplast, and Prokaryotic Genomes

DNA Replication

9.5K Views

article

6.15 : Export of Mitochondrial and Chloroplast Genes

DNA Replication

3.5K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved