Sign In

30.5 : Mechanism of Filopodia Formation

Filopodia are thin, actin-rich cellular protrusions that play an important role in many fundamental cellular functions. They vary in their occurrence, length, and positioning in different cell types, suggesting their diverse roles.

Their main function is to guide migrating cells during normal tissue morphogenesis or cancer metastasis by recognizing and making initial contacts with the extracellular matrix. However, they can also act as stationary cell anchors or help to establish communication between two cells. For example, the formation of filopodial bridges between two adjacent endothelial or epithelial cells is important for the subsequent establishment of adherens junctions. In addition, filopodia can also help the cells to reach and internalize distant targets, such as pathogens.

Filopodia Formation and Disassembly

Actin nucleation, elongation, and bundling are critical for filopodia formation and function. The filopodia core comprises 12-20 actin filaments spaced 12 nm apart. Bundling of these filaments by fascin is crucial to give filopodia the rigidity to maintain its elongated shape.

The disassembly of actin filaments during the retraction phase involves periodic helical and rotational motion of the actin shaft and is regulated by several factors. For instance, capping proteins promote filopodial retraction by shielding the polymerizing ends of the filaments from further elongation. RhoA kinase activity also regulates actin polymerization within filopodia.

Tags
FilopodiaActinCell MigrationCell cell CommunicationExtracellular MatrixActin NucleationActin ElongationActin BundlingFascinCapping ProteinsRhoA Kinase

From Chapter 30:

article

Now Playing

30.5 : Mechanism of Filopodia Formation

Cell Polarization and Migration

2.1K Views

article

30.1 : Cell Migration

Cell Polarization and Migration

4.1K Views

article

30.2 : Actin Polymerization and Cell Motility

Cell Polarization and Migration

4.3K Views

article

30.3 : Types of Membrane Protrusions

Cell Polarization and Migration

2.5K Views

article

30.4 : Mechanism of Lamellipodia Formation

Cell Polarization and Migration

2.3K Views

article

30.6 : Cancer Cell Migration through Invadopodia

Cell Polarization and Migration

2.2K Views

article

30.7 : Cell Motility through Blebbing

Cell Polarization and Migration

1.8K Views

article

30.8 : Role of Myosin in Cell Migration

Cell Polarization and Migration

2.1K Views

article

30.9 : Cell Polarization by Rho Proteins

Cell Polarization and Migration

2.4K Views

article

30.10 : Chemotaxis and Direction of Cell Migration

Cell Polarization and Migration

2.9K Views

article

30.11 : Cytoskeletal Coordination in Cell Migration

Cell Polarization and Migration

4.6K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved