Sign In

18.7 : Electrophilic Aromatic Substitution: Nitration of Benzene

The nitration of benzene is an example of an electrophilic aromatic substitution reaction. It involves the formation of a very powerful electrophile, the nitronium ion, which is linear in shape. The reaction occurs through the interaction of two strong acids, sulfuric and nitric acid.

Figure1

Sulfuric acid is stronger and protonates the nitric acid on the hydroxyl group, followed by loss of water molecule, generating the nitronium ion.

Figure2

The nitronium ion acts as an electrophile that reacts with benzene to form a resonance-stabilized arenium ion. The arenium ion then loses its proton to a Lewis base forming nitrobenzene.

Figure3

The resulting nitro group can be reduced to a primary amino group. Reduction is achieved either by hydrogenation with a transition metal catalyst such as nickel, palladium, or platinum under mild conditions or upon treatment with metals in aqueous acid. Iron, zinc, and tin in dilute HCl are widely used reducing agents. However, ammonium ion is obtained as a salt under acidic conditions, which is then treated with a base such as sodium hydroxide to liberate the free amine.

Tags
Electrophilic Aromatic SubstitutionNitration Of BenzeneNitronium IonSulfuric AcidNitric AcidArenium IonNitrobenzeneReductionHydrogenationTransition Metal CatalystIronZincTinAmmonium IonPrimary Amino Group

From Chapter 18:

article

Now Playing

18.7 : Electrophilic Aromatic Substitution: Nitration of Benzene

Reactions of Aromatic Compounds

4.5K Views

article

18.1 : NMR Spectroscopy of Benzene Derivatives

Reactions of Aromatic Compounds

6.3K Views

article

18.2 : Reactions at the Benzylic Position: Oxidation and Reduction

Reactions of Aromatic Compounds

2.9K Views

article

18.3 : Reactions at the Benzylic Position: Halogenation

Reactions of Aromatic Compounds

2.1K Views

article

18.4 : Electrophilic Aromatic Substitution: Overview

Reactions of Aromatic Compounds

6.6K Views

article

18.5 : Electrophilic Aromatic Substitution: Chlorination and Bromination of Benzene

Reactions of Aromatic Compounds

5.6K Views

article

18.6 : Electrophilic Aromatic Substitution: Fluorination and Iodination of Benzene

Reactions of Aromatic Compounds

5.1K Views

article

18.8 : Electrophilic Aromatic Substitution: Sulfonation of Benzene

Reactions of Aromatic Compounds

3.9K Views

article

18.9 : Electrophilic Aromatic Substitution: Friedel–Crafts Alkylation of Benzene

Reactions of Aromatic Compounds

5.8K Views

article

18.10 : Electrophilic Aromatic Substitution: Friedel–Crafts Acylation of Benzene

Reactions of Aromatic Compounds

5.6K Views

article

18.11 : Limitations of Friedel–Crafts Reactions

Reactions of Aromatic Compounds

4.9K Views

article

18.12 : Directing Effect of Substituents: <em>ortho</em>&ndash;<em>para</em>-Directing Groups

Reactions of Aromatic Compounds

5.1K Views

article

18.13 : Directing Effect of Substituents: <em>meta</em>-Directing Groups

Reactions of Aromatic Compounds

3.6K Views

article

18.14 : <em>ortho</em>&ndash;<em>para</em>-Directing Activators: &ndash;CH<sub>3</sub>, &ndash;OH, &ndash;&NoBreak;NH<sub>2</sub>, &ndash;OCH<sub>3</sub>

Reactions of Aromatic Compounds

5.0K Views

article

18.15 : <em>ortho</em>&ndash;<em>para</em>-Directing Deactivators: Halogens

Reactions of Aromatic Compounds

4.5K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved