If the temperature of an object is changed while it is prevented from expanding or contracting, the object is subjected to stress. The stress is compressive if the object expands in the absence of constraint and tensile if it contracts. This stress resulting from temperature change is known as thermal stress. It can be quite large and can cause damage. To avoid this stress, engineers may design components so they can expand and contract freely. For instance, on highways, gaps are deliberately left between blocks to prevent thermal stress from developing. When no gaps can be left, engineers must consider thermal stress in their designs. Thus, the reinforcing rods in concrete are made of steel because steel's coefficient of linear expansion is nearly equal to that of concrete.
Thermal stress can explain many phenomena, such as the weathering of rocks and pavements by the expansion of ice when it freezes. Railroad tracks and roadways can buckle on hot days if they lack sufficient expansion joints, and power lines sag more in the summer than in the winter and will snap in cold weather if there is insufficient slack. Cracks open and close in plaster walls as a house warms and cools. Glass cooking pans will crack if cooled rapidly or unevenly because of differential contraction and the resulting stresses.
From Chapter 18:
Now Playing
Temperature and Heat
2.2K Views
Temperature and Heat
5.1K Views
Temperature and Heat
3.7K Views
Temperature and Heat
3.4K Views
Temperature and Heat
2.9K Views
Temperature and Heat
3.5K Views
Temperature and Heat
814 Views
Temperature and Heat
4.1K Views
Temperature and Heat
3.5K Views
Temperature and Heat
2.2K Views
Temperature and Heat
2.9K Views
Temperature and Heat
2.6K Views
Temperature and Heat
637 Views
Temperature and Heat
892 Views
Temperature and Heat
477 Views
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved