Sign In

30.7 : Induced Electric Fields: Applications

An important distinction exists between the electric field induced by a changing magnetic field and the electrostatic field produced by a fixed charge distribution. Specifically, the induced electric field is nonconservative because it does not work in moving a charge over a closed path. In contrast, the electrostatic field is conservative and does no net work over a closed path. Hence, electric potential can be associated with the electrostatic field but not the induced field. The following equations represent the distinction between the two types of electric fields:

Equation1

Equation2

When the magnetic flux through a circuit changes, a nonconservative electric field is induced, which drives current through the circuit. However, when there is no conducting path in free space, it can be treated as if a conducting path were present; that is, nonconservative electric fields are induced wherever the magnetic flux through a circuit changes, whether or not a conducting path is present.

Tags
Induced Electric FieldsChanging Magnetic FieldElectrostatic FieldConservative FieldNonconservative Electric FieldMagnetic FluxCircuit CurrentElectric PotentialCharge DistributionClosed Path

From Chapter 30:

article

Now Playing

30.7 : Induced Electric Fields: Applications

Electromagnetic Induction

1.2K Views

article

30.1 : Induction

Electromagnetic Induction

3.4K Views

article

30.2 : Faraday's Law

Electromagnetic Induction

3.4K Views

article

30.3 : Lenz's Law

Electromagnetic Induction

3.2K Views

article

30.4 : Motional Emf

Electromagnetic Induction

2.9K Views

article

30.5 : Faraday Disk Dynamo

Electromagnetic Induction

1.8K Views

article

30.6 : Induced Electric Fields

Electromagnetic Induction

3.2K Views

article

30.8 : Eddy Currents

Electromagnetic Induction

1.3K Views

article

30.9 : Displacement Current

Electromagnetic Induction

2.6K Views

article

30.10 : Significance of Displacement Current

Electromagnetic Induction

4.0K Views

article

30.11 : Electromagnetic Fields

Electromagnetic Induction

2.0K Views

article

30.12 : Maxwell's Equation Of Electromagnetism

Electromagnetic Induction

2.7K Views

article

30.13 : Symmetry in Maxwell's Equations

Electromagnetic Induction

3.0K Views

article

30.14 : Ampere-Maxwell's Law: Problem-Solving

Electromagnetic Induction

332 Views

article

30.15 : Differential Form of Maxwell's Equations

Electromagnetic Induction

281 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved