Sign In

19.12 : Dalton's Law of Partial Pressure

The partial pressure of a gas is a measure of the thermodynamic activity of the gas's molecules. The pressure that a gas would create if it occupied the total volume available is called the gas's partial pressure. If two or more gases are mixed together in a container, the molecules move randomly and collide with each other, causing them to reach thermal equilibrium. When the gases have the same temperature, their molecules have the same average kinetic energy. Thus, each gas obeys the ideal gas law separately and exerts the same pressure on the walls of a container individually. Therefore, in a mixture of gases, the total pressure in the container is the sum of the partial pressures of the component gases, assuming ideal gas behavior and no chemical reactions between the components. This law is known as Dalton's law of partial pressures. The theory was established by the English scientist John Dalton (1766–1844). Dalton's law is consistent with the fact that pressures add up, according to Pascal's principle. In a mixture of ideal gases in thermal equilibrium, the number of molecules of each gas is proportional to its partial pressure.

Another important application of partial pressure is vapor pressure, which is the partial pressure of a vapor at which it is in equilibrium with the liquid phase of the same substance. At any temperature, the partial pressure of the water in the air cannot exceed the vapor pressure of the water at that temperature, as whenever the partial pressure reaches the vapor pressure, water condenses out of the air. Dew is an example of this condensation. The temperature at which condensation occurs for a sample of air is called the dew point. It is easily measured by slowly cooling a metal ball; the dew point is the temperature at which condensation first appears on the ball.

Tags
Dalton s LawPartial PressureThermodynamic ActivityGas MixtureThermal EquilibriumIdeal Gas LawKinetic EnergyTotal PressureVapor PressureCondensationDew PointJohn DaltonPascal s Principle

From Chapter 19:

article

Now Playing

19.12 : Dalton's Law of Partial Pressure

The Kinetic Theory of Gases

985 Views

article

19.1 : Equation of State

The Kinetic Theory of Gases

1.2K Views

article

19.2 : Ideal Gas Equation

The Kinetic Theory of Gases

4.3K Views

article

19.3 : Van der Waals Equation

The Kinetic Theory of Gases

2.9K Views

article

19.4 : pV-Diagrams

The Kinetic Theory of Gases

3.5K Views

article

19.5 : Kinetic Theory of an Ideal Gas

The Kinetic Theory of Gases

2.5K Views

article

19.6 : Molecular Kinetic Energy

The Kinetic Theory of Gases

3.7K Views

article

19.7 : Distribution of Molecular Speeds

The Kinetic Theory of Gases

2.8K Views

article

19.8 : Maxwell-Boltzmann Distribution: Problem Solving

The Kinetic Theory of Gases

1.0K Views

article

19.9 : Phase Diagram

The Kinetic Theory of Gases

5.3K Views

article

19.10 : Mean free path and Mean free time

The Kinetic Theory of Gases

2.1K Views

article

19.11 : Heat Capacity: Problem-Solving

The Kinetic Theory of Gases

353 Views

article

19.13 : Escape Velocities of Gases

The Kinetic Theory of Gases

756 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved