Sign In

23.13 : Divergence and Curl of Electric Field

The divergence of a vector is a measure of how much the vector spreads out (diverges) from a point. For example, an electric field vector diverges from the positive charge and converges at the negative charge. The divergence of an electric field is derived using Gauss's law and is equal to the charge density divided by the permittivity of space. Mathematically, it is expressed as

Equation1

If the divergence of an electric field is zero at a given point, the charge density at that point is also zero. The expression defines the sources of the electric field intensity and hence provides a method to calculate the electric field intensity.

The curl of a vector is a measure of how much the vector swirls around the point of observation. For static charges, the electric field lines do not circulate back on themselves; therefore, the curl of the electric field is zero. This can be expressed mathematically using Stokes' theorem, which states that the surface integral of the curl of an electric field equals the line integral of the electric field along a closed path. Now, since the line integral of the electric field along any closed path is zero, this implies that the curl of the electric field is also zero.

The electrostatic field is irrotational (curl-free) and has non-zero divergence for static charge distribution. This infers that the electrostatic field is generated by a scalar source alone, that is, a charge or a charge density.

Tags
DivergenceCurlElectric FieldGauss s LawCharge DensityPermittivity Of SpaceElectric Field IntensityStatic ChargesStokes TheoremElectrostatic FieldIrrotationalCharge Distribution

From Chapter 23:

article

Now Playing

23.13 : Divergence and Curl of Electric Field

Gauss's Law

4.4K Views

article

23.1 : Electric Flux

Gauss's Law

6.5K Views

article

23.2 : Calculation of Electric Flux

Gauss's Law

1.3K Views

article

23.3 : Gauss's Law

Gauss's Law

6.0K Views

article

23.4 : Gauss's Law: Problem-Solving

Gauss's Law

1.2K Views

article

23.5 : Gauss's Law: Spherical Symmetry

Gauss's Law

6.4K Views

article

23.6 : Gauss's Law: Cylindrical Symmetry

Gauss's Law

6.6K Views

article

23.7 : Gauss's Law: Planar Symmetry

Gauss's Law

7.0K Views

article

23.8 : Electric Field Inside a Conductor

Gauss's Law

5.2K Views

article

23.9 : Charge on a Conductor

Gauss's Law

4.1K Views

article

23.10 : Electric Field at the Surface of a Conductor

Gauss's Law

4.1K Views

article

23.11 : Electric Field of a Non Uniformly Charged Sphere

Gauss's Law

1.2K Views

article

23.12 : Electric Field of Parallel Conducting Plates

Gauss's Law

598 Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved