The effect of an inert salt on the solubility of a sparingly soluble salt is known as the salt effect. The degree of the salt effect varies with the ionic strength of the solution, which in turn depends on the activity of the species in the solution. The activity is expressed as the product of concentration and the activity coefficient of the species.
To calculate the equilibrium constants of solutions of moderately high ionic strength, one must account for the salt effect. This redefined equilibrium constant is also called the thermodynamic equilibrium constant or standard equilibrium constant, as it expresses the Gibbs energy change of the process. The thermodynamic equilibrium constant incorporates the ionic strength of the solution.
In solutions of low ionic strength (nearly an ideal solution), the activity coefficient is close to 1. Thus, the thermodynamic equilibrium constant is approximately equal to the concentration equilibrium constant.
The activity coefficient corrections are often ignored to simplify the experimental calculations of equilibrium constants. This approximation is valid for dilute solutions containing singly charged ions or non-dissociating species with ionic strengths lower than 0.01 mol/L. Activity coefficient corrections become more critical for solutions with ionic strengths greater than 0.01 mol/L or of multiply charged ions. Ignoring the activity coefficient in such cases results in significant errors in calculations.
From Chapter 2:
Now Playing
Chemical Equilibria
478 Views
Chemical Equilibria
1.1K Views
Chemical Equilibria
1.2K Views
Chemical Equilibria
770 Views
Chemical Equilibria
1.1K Views
Chemical Equilibria
655 Views
Chemical Equilibria
577 Views
Chemical Equilibria
492 Views
Chemical Equilibria
405 Views
Chemical Equilibria
398 Views
Chemical Equilibria
289 Views
Chemical Equilibria
532 Views
Chemical Equilibria
891 Views
Chemical Equilibria
530 Views
Chemical Equilibria
382 Views
See More
Copyright © 2025 MyJoVE Corporation. All rights reserved