Sign In

5.18 : Precipitate Formation and Particle Size Control

In precipitation gravimetry, the precipitating agent should react specifically or selectively with the analyte. While a specific reagent reacts with the analyte alone, a selective reagent can react with a limited number of chemical species.

The obtained precipitate should be either a pure substance of known composition or easily converted to one by a simple process, such as ignition or drying. In addition, the precipitate should be insoluble and easily filterable. In general, filterability increases with the size of the precipitate particles. Colloidal suspensions contain minuscule particles with diameters varying from 10−9 to 10−6 m, which are invisible to the naked eye and not easily filtered. However, crystalline suspensions have larger particles that settle quickly and are readily filtered.

The temperature, precipitate solubility, reactant concentrations, and speed of mixing of reactants can affect the particle size. The overall effect of these attributes is called relative supersaturation, RSS, which can be expressed in terms of the concentration of the solute (Q) and its equilibrium solubility (S). The size of the obtained particles is inversely proportional to the average relative supersaturation when the reagent is added. As a result, when the relative supersaturation ratio is high, colloidal precipitates are favored, while crystalline precipitates with large particle sizes are obtained at low relative supersaturation ratios.

Tags
Precipitate FormationParticle Size ControlPrecipitation GravimetrySpecific ReagentSelective ReagentPure SubstanceInsoluble PrecipitateFilterabilityColloidal SuspensionsCrystalline SuspensionsRelative SupersaturationRSSSolute ConcentrationEquilibrium Solubility

From Chapter 5:

article

Now Playing

5.18 : Precipitate Formation and Particle Size Control

Complexometric Titration, Precipitation Titration, and Gravimetry

345 Views

article

5.1 : Complexometric Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

3.4K Views

article

5.2 : Complexometric Titration: Ligands

Complexometric Titration, Precipitation Titration, and Gravimetry

666 Views

article

5.3 : Properties of Organometallic Compounds

Complexometric Titration, Precipitation Titration, and Gravimetry

595 Views

article

5.4 : EDTA: Chemistry and Properties

Complexometric Titration, Precipitation Titration, and Gravimetry

1.2K Views

article

5.5 : EDTA: Conditional Formation Constant

Complexometric Titration, Precipitation Titration, and Gravimetry

407 Views

article

5.6 : EDTA: Auxiliary Complexing Reagents

Complexometric Titration, Precipitation Titration, and Gravimetry

346 Views

article

5.7 : EDTA: Direct, Back-, and Displacement Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

1.2K Views

article

5.8 : EDTA: Indirect and Alkalimetric Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

380 Views

article

5.9 : Complexometric EDTA Titration Curves

Complexometric Titration, Precipitation Titration, and Gravimetry

550 Views

article

5.10 : Effects of EDTA on End-Point Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

110 Views

article

5.11 : Masking and Demasking Agents

Complexometric Titration, Precipitation Titration, and Gravimetry

1.5K Views

article

5.12 : Precipitation Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

3.1K Views

article

5.13 : Precipitation Titration Curve: Analysis

Complexometric Titration, Precipitation Titration, and Gravimetry

666 Views

article

5.14 : Precipitation Titration: Endpoint Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

979 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved