Sign In

13.4 : Variation of Atmospheric Pressure

Change in atmospheric pressure with height is particularly interesting. The decrease in atmospheric pressure with increasing altitude is due to the decreasing gravitational force per unit area as we move away from the surface of the earth.

Assuming the air temperature is constant at a given altitude and that the ideal gas law of thermodynamics describes the atmosphere to a good approximation, one can find the variation of atmospheric pressure with height.

Let p(y) be the atmospheric pressure at height y. The density ρ at y, the temperature T in the Kelvin scale (K), and the mass m of a molecule of air are related to the absolute pressure by the ideal gas law, in the form:

Equation1

Using density from the ideal gas law, the rate of variation of pressure with height is integrated from sea level, and the final expression is obtained as:

Equation2

where,

Equation3

Atmospheric pressure drops exponentially with height, since the y-axis points up from the ground, and y has positive values in the atmosphere above sea level. The pressure drops by a factor of 1/e when the height is 1/α, which gives us a physical interpretation for α. The constant 1/α is a length scale that characterizes how pressure varies with height and is often referred to as the pressure scale height.

Tags
Atmospheric PressureHeight VariationGravitational ForceIdeal Gas LawThermodynamicsDensityTemperaturePressure Scale HeightPressure DropSea LevelExponential Decrease

From Chapter 13:

article

Now Playing

13.4 : Variation of Atmospheric Pressure

Fluid Mechanics

1.6K Views

article

13.1 : Characteristics of Fluids

Fluid Mechanics

2.6K Views

article

13.2 : Density

Fluid Mechanics

9.9K Views

article

13.3 : Pressure of Fluids

Fluid Mechanics

8.9K Views

article

13.5 : Pascal's Law

Fluid Mechanics

6.3K Views

article

13.6 : Application of Pascal's Law

Fluid Mechanics

6.4K Views

article

13.7 : Pressure Gauges

Fluid Mechanics

1.8K Views

article

13.8 : Buoyancy

Fluid Mechanics

4.1K Views

article

13.9 : Archimedes' Principle

Fluid Mechanics

6.1K Views

article

13.10 : Density and Archimedes' Principle

Fluid Mechanics

6.0K Views

article

13.11 : Accelerating Fluids

Fluid Mechanics

840 Views

article

13.12 : Surface Tension and Surface Energy

Fluid Mechanics

983 Views

article

13.13 : Excess Pressure Inside a Drop and a Bubble

Fluid Mechanics

1.2K Views

article

13.14 : Contact Angle

Fluid Mechanics

1.7K Views

article

13.15 : Rise of Liquid in a Capillary Tube

Fluid Mechanics

732 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved