Sign In

16.21 : Neurotransmitters

Neurotransmitters play a crucial role in the communication between neurons in the autonomic nervous system. Neurons in the autonomic nervous system can be cholinergic or adrenergic depending on the neurotransmitters synthesized. Cholinergic neurons use acetylcholine as their primary neurotransmitter. This includes all the preganglionic fibers of the sympathetic and pre- and postganglionic fibers of the parasympathetic nervous systems. In addition, neurons of the somatic nervous system also use acetylcholine at the neuromuscular junction. In contrast, adrenergic neurons employ noradrenaline (also known as norepinephrine) as their main neurotransmitter. The postganglionic neurons at the sympathetic division use noradrenaline for transmission. Furthermore, the adrenal medulla releases a mixture of adrenaline and noradrenaline.

Apart from acetylcholine and noradrenaline, nonadrenergic noncholinergic (NANC) transmitters are also involved in autonomic transmission. These include ATP, neuropeptide Y (NPY), vasoactive intestinal peptides (VIP), and nitric oxide, which function at the postganglionic nerve terminal. Neurotransmitters such as γ-aminobutyric acid (GABA), 5-hydroxytryptamine (5-HT), dopamine, and substance P involved in ganglionic transmissions, are also called NANC.

Sometimes, neurotransmitters are often accompanied by co-transmitters during release. Co-transmitter helps the primary neurotransmitter in reaching remote targets and producing sustained effects. For example, acetylcholine is often associated with VIP, while acetylcholine and noradrenaline are associated with ATP. Co-transmitters are stored in separate vesicles from the neurotransmitter. Although, certain co-transmitters, such as ATP, may be stored in the same vesicle as noradrenaline. Co-transmitters can also serve as alternative transmitters, exerting trophic effects on the synapses.

Tags
NeurotransmittersChemical MessengersSynaptic TransmissionBrain ChemistryNeural CommunicationNeurotransmissionSignaling MoleculesNeurotransmitter TypesCentral Nervous SystemNeurotransmitter Receptors

From Chapter 16:

article

Now Playing

16.21 : Neurotransmitters

The Nervous System and Nervous Tissue

1.9K Views

article

16.1 : Organization of the Nervous System

The Nervous System and Nervous Tissue

2.0K Views

article

16.2 : Functional Divisions of the Nervous System

The Nervous System and Nervous Tissue

1.7K Views

article

16.3 : Functions of the Nervous System

The Nervous System and Nervous Tissue

1.2K Views

article

16.4 : Neurons: The Cell Body and the Dendrites

The Nervous System and Nervous Tissue

1.0K Views

article

16.5 : Neurons: The Axon

The Nervous System and Nervous Tissue

1.2K Views

article

16.6 : Nervous Tissue: Neuron Types

The Nervous System and Nervous Tissue

950 Views

article

16.7 : Nervous Tissue: Glial Cells

The Nervous System and Nervous Tissue

1.2K Views

article

16.8 : Nervous Tissue: Myelin

The Nervous System and Nervous Tissue

1.2K Views

article

16.9 : Electrochemical Gradient and Channel Proteins: An Overview

The Nervous System and Nervous Tissue

706 Views

article

16.10 : Ligand-gated Ion Channels

The Nervous System and Nervous Tissue

617 Views

article

16.11 : Voltage-gated Ion Channels

The Nervous System and Nervous Tissue

661 Views

article

16.12 : Mechanically-gated Ion Channels

The Nervous System and Nervous Tissue

397 Views

article

16.13 : Resting Membrane Potential

The Nervous System and Nervous Tissue

972 Views

article

16.14 : Resting Potential Decay

The Nervous System and Nervous Tissue

328 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved