The utilization of strain gauges as transducers for converting mechanical strain into electrical signals is a common practice in various engineering applications. These strain gauges are frequently integrated into Wheatstone bridge circuits to accurately measure parameters such as force or pressure. Within this context, each element within the circuit exhibits a resistance that undergoes subtle variations when subjected to mechanical strain. The primary objective is to convert minuscule variations in small voltage output into a more discernible voltage output, which can be conveniently read using a voltmeter.
In the engineer's capacity, the responsibilities include creating a strain gauge design and determining the necessary amplification to reflect changes in resistance accurately. This relies upon the application of Thevenin's theorem, which establishes the connection between the output voltage of the bridge circuit and variations in resistance.
The procedure starts by calculating the Thevenin voltage, which requires the initial determination of currents within both the upper and lower branches of the circuit. As a result, these computed current values are substituted into Ohm's law to derive the Thevenin voltage. Simultaneously, Thevenin resistance is determined by removing the voltage source in a simplified configuration.
The Thevenin equivalent circuit finds the bridge's output voltage through the voltage division rule. The critical outcome of this analysis enables the precise determination of the amplifier gain required for designing the circuit to operate effectively within the specified operational range.
From Chapter 2:
Now Playing
DC Circuit Analysis
159 Views
DC Circuit Analysis
428 Views
DC Circuit Analysis
513 Views
DC Circuit Analysis
240 Views
DC Circuit Analysis
865 Views
DC Circuit Analysis
1.3K Views
DC Circuit Analysis
241 Views
DC Circuit Analysis
289 Views
DC Circuit Analysis
179 Views
DC Circuit Analysis
207 Views
DC Circuit Analysis
97 Views
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved