JoVE Logo
Faculty Resource Center

Sign In

Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions

DOI :

10.3791/54219-v

July 30th, 2016

July 30th, 2016

19,844 Views

1Department of Plant and Wildlife Sciences, Brigham Young University, 2Department of Entomology, Cornell University, 3Department of Molecular Biology and Genetics, Cornell University, 4Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 5Biological Sciences, SUNY Oswego

A method for rearing Drosophila melanogaster under axenic and gnotobiotic conditions is presented. Fly embryos are dechorionated in sodium hypochlorite, transferred aseptically to sterile diet, and reared in closed containers. Inoculating diet and embryos with bacteria leads to gnotobiotic associations, and bacterial presence is confirmed by plating whole-body Drosophila homogenates.

-- Views

Related Videos

article

Generation of Retinal Organoids from Healthy and Retinal Disease-Specific Human-Induced Pluripotent Stem Cells

article

Targeted Microinjection and Electroporation of Primate Cerebral Organoids for Genetic Modification

article

Optogenetic Inhibition of Rho1-Mediated Actomyosin Contractility Coupled with Measurement of Epithelial Tension in Drosophila Embryos

article

Nuclei Isolation from Mouse Cardiac Progenitor Cells for Epigenome and Gene Expression Profiling at Single-Cell Resolution

article

Author Spotlight: Advancing Lens Biomechanics Research Through a Novel Protocol for Imaging Complex Interdigitations and Protein Staining

article

Author Spotlight: Effect of Left Atrial Ligation on Avian Embryonic Hearts and HLHS Implications

article

Author Spotlight: Understanding DNA Damage Response in Mammalian Oocytes and Preimplantation Embryos

article

Author Spotlight: Investigating Asymmetric Cell Division Dynamics: A Protocol for Live-Imaging of Drosophila Larval Brain Explants

article

Author Spotlight: Cistrome Analysis in Mouse Muscle Stem Cells

article

Author Spotlight: Optimizing iPSC Differentiation for Efficient Production to Generate Kidney Organoids

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved