JoVE Logo
Faculty Resource Center

Sign In

Nanoparticle Tracking Analysis of Gold Nanoparticles in Aqueous Media through an Inter-Laboratory Comparison

DOI :

10.3791/61741-v

7:08 min

October 20th, 2020

October 20th, 2020

6,477 Views

1School of Geography, Earth and Environmental Sciences, University of Birmingham, 2Malvern Panalytical, 3Department of Materials, University of Oxford, 4Wageningen Food Safety Research, 5UK Centre for Ecology & Hydrology, 6Institute for Next Generation Material Design, Hanyang University, 7Department of Chemistry, College of Natural Sciences, Hanyang University, 8UK Centre for Ecology & Hydrology

The protocol described here aims to measure the hydrodynamic diameter of spherical nanoparticles, more specifically gold nanoparticles, in aqueous media by means of Nanoparticle Tracking Analysis (NTA). The latter involves tracking the movement of particles due to Brownian motion and implementing the Stokes-Einstein equation to obtain the hydrodynamic diameter.

Tags

Nanoparticle Tracking Analysis

-- Views

Related Videos

article

An Improved Technique for Trimethylamine Detection in Animal-Derived Medicine by Headspace Gas Chromatography-Tandem Quadrupole Mass Spectrometry

article

Porphyrin-Modified Beads for Use as Compensation Controls in Flow Cytometry

article

Tracking Electrochemistry on Single Nanoparticles with Surface-Enhanced Raman Scattering Spectroscopy and Microscopy

article

Experimental Approaches for the Synthesis of Low-Valent Metal-Organic Frameworks from Multitopic Phosphine Linkers

article

Author Spotlight: Exploring Tea Aroma Using Solvent-Assisted Flavor Evaporation Technique

article

Magnetometric Characterization of Intermediates in the Solid-State Electrochemistry of Redox-Active Metal-Organic Frameworks

article

Author Spotlight: Functionalizing Metal-Organic Frameworks: Advancements, Challenges, and the Power of Post-Synthetic Ligand Exchange

article

Single-Molecule Surface-Enhanced Raman Scattering Measurements Enabled by Plasmonic DNA Origami Nanoantennas

article

Author Spotlight: Accelerating Discovery in Microporous Material Chemistry

article

Author Spotlight: Unveiling the Potential of VSFG Microscopy in Studying Mesoscopically Heterogeneous Self-Assembled Structures

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved