Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we study implications of Leishmania-host interaction by exploring Leishmania-infected dendritic cells migration. The differentiation and infection of dendritic cells, migration analysis, and the evaluation of adhesion complexes and actin dynamics are described. This method can be applied to other host cell migration studies when infected with Leishmania or other intracellular parasite species.

Abstract

Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-resolving localized cutaneous lesions to a highly fatal visceral form of the disease. An estimated 12 million people worldwide are currently infected, and another 350 million face risk of infection. It is known that host cells infected by Leishmania parasites, such as macrophages or dendritic cells, can migrate to different host tissues, yet how migration contributes to parasite dissemination and homing remains poorly understood. Therefore, assessing these parasites' ability to modulate host cell response, adhesion, and migration will shed light on mechanisms involved in disease dissemination and visceralization. Cellular migration is a complex process in which cells undergo polarization and protrusion, allowing them to migrate. This process, regulated by actin and tubulin-based microtubule dynamics, involves different factors, including the modulation of cellular adhesion to the substrate. Cellular adhesion and migration processes have been investigated using several models. Here, we describe a method to characterize the migratory aspects of host cells during Leishmania infection. This detailed protocol presents the differentiation and infection of dendritic cells, the analysis of host cell motility and migration, and the formation of adhesion complexes and actin dynamics. This in vitro protocol aims to further elucidate mechanisms involved in Leishmania dissemination within vertebrate host tissues and can also be modified and applied to other cell migration studies.

Introduction

Leishmaniasis, a neglected tropical disease caused by protozoan parasites belonging to the genus Leishmania, results in a wide-ranging spectrum of clinical manifestations, from self-healing localized cutaneous lesions to fatal visceral forms of the disease. It has been estimated that up to one million new leishmaniasis cases arise annually, with a reported 12 million people currently infected worldwide1. Visceral leishmaniasis (VL), which can be fatal in over 95% of cases when left untreated, causes more than 50,000 deaths annually, affecting millions in South America, East Africa, South Asia, and the Mediterranean region

Protocol

The procedures described herein were approved by the Institutional Review Board of the Gonçalo Moniz Institute (IGM-FIOCRUZ, protocol no. 2.751.345). Blood samples were obtained from healthy volunteer donors. Animal experimental procedures were conducted in accordance with the Ethical Principles in Animal Research adopted by the Brazilian law 11.784/2008 and were approved and licensed by the Ethical Committee for Animal Research of the Gonçalo Moniz Institute (IGM-FIOCRUZ, protocol no. 014/2019).

Representative Results

This protocol described herein enables the evaluation of cell migration and its associated mechanisms, such as actin dynamics and adhesion, thereby providing a tool to determine the migration of Leishmania-infected host cells within the vertebrate host. The results presented here demonstrate that this in vitro assay provides rapid and consistent indications of changes in cellular adhesion, migration, and actin dynamics prior to in vivo experimentation.

First, cells w.......

Discussion

The method described here for evaluating cell migration using the cell culture membrane inserts system allows researchers to study the migratory response of cells in a two-dimensional environment. In this technique, some steps are considered critical. Firstly, the differentiation of human DCs and infection with Leishmania are determinative since the infection rate is donor-dependent. Using more than one donor per experiment and healthy Leishmania cultures will allow for more consistent results. It is al.......

Acknowledgements

This work was supported by Bahia Research Support Foundation (Fapesb), grant number 9092/2015. The authors acknowledge CNPq, Capes and Fapesb for financial support via scholarships. The authors would like to thank Andris K. Walter for critical analysis, English language revision and manuscript copyediting assistance.

....

Materials

NameCompanyCatalog NumberComments
16 Gauge needleDescarpack353101
24 well cell culture plateJET-BIOFILJ011024
25 Gauge needleDescarpack353601
Albumin from bovine serumSigma AldrichA2153-100G
Ammonium chlorideSigma AldrichA-0171
Anti-mouse IgG, Alexa Fluor 488InvitrogenA32723
Anti-mouse IgG, Alexa Fluor 594InvitrogenA11032
Anti-rabbit IgG, Alexa Fluor 568InvitrogenA11011
CD14 MicroBeadsMACS Myltenyi Biotec130-050-201
Cell Culture Flask 25cm2SPL70125
CellstripperCorning25-056-CI
Confocal microscopeLeicaTCS SP8
Coverslip circles 13mmPerfecta10210013CE
Dissecting ForcepsVWR82027-406
EDTASigma AldrichE6758
Falcon tubeKASVIK19-0051
Fetal Bovine Serumgibco16000044
Fluorescence microscopeOlympus BX51
Glass slide  25,4x76,2mmPerfecta200
Hemin bovineSigma AldrichH2250
HemocytometerPerfecta7302HD
Histopaque® 1077Sigma Aldrich10771
MACS bufferMACS Myltenyi Biotec130-091-221
Minimum Essential MediumGibco41090093
Mouse anti-Rac1BD610650
ParaformaldehydeSigma Aldrich158127
Phalloidin Alexa Fluor 488InvitrogenA12379
Phosphate Buffered SalineThermoFisherAM9624
Polycarbonate Membrane Transwell Inserts - Pore size 5.0 µmCorning3421
ProLong Gold DAPI kitInvitrogenP36931
Rabbit anti-Cdc42InvitrogenPA1-092X
Rabbit anti-FAK (pTyr397)InvitrogenRC222574
Rabbit anti-paxilin (pTyr118)InvitrogenQF221230
Rabbit anti-RhoAInvitrogenOSR00266W
Recombinant Human CCL3R&D Systems270-LD-010
Recombinant Human GM-CSFPeproTech300-03
Recombinant Human IL-4PeproTech200-04
Recombinant Human M-CSFPeproTech300-25
RPMI 1640 MediumGibco21870076
SaponinSigma Aldrich47036 – 50G – F
Syringe 3 mLDescarpack324201
Trypan BlueGibco15250061

References

  1. Burza, S., Croft, S. L., Boelaert, M. Leishmaniasis. The Lancet. 392 (10151), 951-970 (2018).
  2. Bi, K., Chen, Y., Zhao, S., Kuang, Y., John Wu, C. H. Current Visceral Leishmaniasis Research: A Research Review to Inspire Future Study.

Explore More Articles

Cell MigrationCell AdhesionLeishmaniaHost Cell InteractionDendritic CellsActin DynamicsCell MotilityCell PolarizationCell ProtrusionMicrotubule DynamicsCellular Adhesion Complexes

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved