A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here we study implications of Leishmania-host interaction by exploring Leishmania-infected dendritic cells migration. The differentiation and infection of dendritic cells, migration analysis, and the evaluation of adhesion complexes and actin dynamics are described. This method can be applied to other host cell migration studies when infected with Leishmania or other intracellular parasite species.
Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-resolving localized cutaneous lesions to a highly fatal visceral form of the disease. An estimated 12 million people worldwide are currently infected, and another 350 million face risk of infection. It is known that host cells infected by Leishmania parasites, such as macrophages or dendritic cells, can migrate to different host tissues, yet how migration contributes to parasite dissemination and homing remains poorly understood. Therefore, assessing these parasites' ability to modulate host cell response, adhesion, and migration will shed light on mechanisms involved in disease dissemination and visceralization. Cellular migration is a complex process in which cells undergo polarization and protrusion, allowing them to migrate. This process, regulated by actin and tubulin-based microtubule dynamics, involves different factors, including the modulation of cellular adhesion to the substrate. Cellular adhesion and migration processes have been investigated using several models. Here, we describe a method to characterize the migratory aspects of host cells during Leishmania infection. This detailed protocol presents the differentiation and infection of dendritic cells, the analysis of host cell motility and migration, and the formation of adhesion complexes and actin dynamics. This in vitro protocol aims to further elucidate mechanisms involved in Leishmania dissemination within vertebrate host tissues and can also be modified and applied to other cell migration studies.
Leishmaniasis, a neglected tropical disease caused by protozoan parasites belonging to the genus Leishmania, results in a wide-ranging spectrum of clinical manifestations, from self-healing localized cutaneous lesions to fatal visceral forms of the disease. It has been estimated that up to one million new leishmaniasis cases arise annually, with a reported 12 million people currently infected worldwide1. Visceral leishmaniasis (VL), which can be fatal in over 95% of cases when left untreated, causes more than 50,000 deaths annually, affecting millions in South America, East Africa, South Asia, and the Mediterranean region
The procedures described herein were approved by the Institutional Review Board of the Gonçalo Moniz Institute (IGM-FIOCRUZ, protocol no. 2.751.345). Blood samples were obtained from healthy volunteer donors. Animal experimental procedures were conducted in accordance with the Ethical Principles in Animal Research adopted by the Brazilian law 11.784/2008 and were approved and licensed by the Ethical Committee for Animal Research of the Gonçalo Moniz Institute (IGM-FIOCRUZ, protocol no. 014/2019).
This protocol described herein enables the evaluation of cell migration and its associated mechanisms, such as actin dynamics and adhesion, thereby providing a tool to determine the migration of Leishmania-infected host cells within the vertebrate host. The results presented here demonstrate that this in vitro assay provides rapid and consistent indications of changes in cellular adhesion, migration, and actin dynamics prior to in vivo experimentation.
First, cells w.......
The method described here for evaluating cell migration using the cell culture membrane inserts system allows researchers to study the migratory response of cells in a two-dimensional environment. In this technique, some steps are considered critical. Firstly, the differentiation of human DCs and infection with Leishmania are determinative since the infection rate is donor-dependent. Using more than one donor per experiment and healthy Leishmania cultures will allow for more consistent results. It is al.......
This work was supported by Bahia Research Support Foundation (Fapesb), grant number 9092/2015. The authors acknowledge CNPq, Capes and Fapesb for financial support via scholarships. The authors would like to thank Andris K. Walter for critical analysis, English language revision and manuscript copyediting assistance.
....Name | Company | Catalog Number | Comments |
16 Gauge needle | Descarpack | 353101 | |
24 well cell culture plate | JET-BIOFIL | J011024 | |
25 Gauge needle | Descarpack | 353601 | |
Albumin from bovine serum | Sigma Aldrich | A2153-100G | |
Ammonium chloride | Sigma Aldrich | A-0171 | |
Anti-mouse IgG, Alexa Fluor 488 | Invitrogen | A32723 | |
Anti-mouse IgG, Alexa Fluor 594 | Invitrogen | A11032 | |
Anti-rabbit IgG, Alexa Fluor 568 | Invitrogen | A11011 | |
CD14 MicroBeads | MACS Myltenyi Biotec | 130-050-201 | |
Cell Culture Flask 25cm2 | SPL | 70125 | |
Cellstripper | Corning | 25-056-CI | |
Confocal microscope | Leica | TCS SP8 | |
Coverslip circles 13mm | Perfecta | 10210013CE | |
Dissecting Forceps | VWR | 82027-406 | |
EDTA | Sigma Aldrich | E6758 | |
Falcon tube | KASVI | K19-0051 | |
Fetal Bovine Serum | gibco | 16000044 | |
Fluorescence microscope | Olympus | BX51 | |
Glass slide 25,4x76,2mm | Perfecta | 200 | |
Hemin bovine | Sigma Aldrich | H2250 | |
Hemocytometer | Perfecta | 7302HD | |
Histopaque® 1077 | Sigma Aldrich | 10771 | |
MACS buffer | MACS Myltenyi Biotec | 130-091-221 | |
Minimum Essential Medium | Gibco | 41090093 | |
Mouse anti-Rac1 | BD | 610650 | |
Paraformaldehyde | Sigma Aldrich | 158127 | |
Phalloidin Alexa Fluor 488 | Invitrogen | A12379 | |
Phosphate Buffered Saline | ThermoFisher | AM9624 | |
Polycarbonate Membrane Transwell Inserts - Pore size 5.0 µm | Corning | 3421 | |
ProLong Gold DAPI kit | Invitrogen | P36931 | |
Rabbit anti-Cdc42 | Invitrogen | PA1-092X | |
Rabbit anti-FAK (pTyr397) | Invitrogen | RC222574 | |
Rabbit anti-paxilin (pTyr118) | Invitrogen | QF221230 | |
Rabbit anti-RhoA | Invitrogen | OSR00266W | |
Recombinant Human CCL3 | R&D Systems | 270-LD-010 | |
Recombinant Human GM-CSF | PeproTech | 300-03 | |
Recombinant Human IL-4 | PeproTech | 200-04 | |
Recombinant Human M-CSF | PeproTech | 300-25 | |
RPMI 1640 Medium | Gibco | 21870076 | |
Saponin | Sigma Aldrich | 47036 – 50G – F | |
Syringe 3 mL | Descarpack | 324201 | |
Trypan Blue | Gibco | 15250061 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved