A subscription to JoVE is required to view this content. Sign in or start your free trial.
The present protocol describes traumatic peripheral nerve injuries (TPNIs), including precisely calibrated crush, strictly aligned and misaligned laceration, as well as grafted and non-grafted gaps of the sciatic nerve in mice. Custom-designed sensors are developed to gauge nerve trauma, induced with commonly available tools to ensure reproducible post-TPNI outcomes.
Traumatic peripheral nerve injury (TPNI) is a common cause of morbidity following orthopedic trauma. Reproducible and precise methods of injuring nerve and denervating muscle have long been a goal in musculoskeletal research. Many traumatically injured limbs have nerve trauma that defines the long-term patient outcome. Over several years, precise methods of producing microsurgical nerve injuries have been developed, including crush, lacerations, and nerve-gap grafting, allowing for reproducible outcome assessments. Moreover, newer methods are created for calibrated crush injuries that offer clinically relevant correlations with outcomes used to assess human patients. The principles of minimal manipulation to ensure low variability in nerve injury allow for adding still more associated tissue injuries into these models. This includes direct muscle crush and other components of limb injury. Finally, atrophy assessment and precise analysis of behavioral outcomes make these methods a complete package for studying musculoskeletal trauma that realistically incorporates all the elements of human traumatic limb injury.
Traumatic peripheral nerve injury (TPNI) is a common cause of morbidity after orthopedic trauma1,2,3. Yearly, approximately 3% of trauma patients suffer nerve injury1,4, at an incidence of 3,50,000 cases5, resulting in 50,000 surgical repairs6. TPNIs occur in a wide range of severity, and the functional recovery directly depends on the type and severity of these injuries7,8,9. L....
The experimental design and animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC) at Penn State University College of Medicine. Adult C57BL/6J male mice, 10-week-old, weighing 20-25 g, were used for the studies. Animals were housed at the animal facility under sterile animal management conditions, and they were acclimatized at least 5 days before conducting the studies.
1. Animal preparation
The custom-made digital pressure sensor device (Figure 1D) operates by detecting the change in resistance of the FSR when a force is applied. This device senses and records the most modest pressure amounts applied to it with a response time of <5 µs, a sampling rate of 20 Hz, and a pressure range of 2.5-25 lbs31. The differences in the forceps (Figure 1C) induced SNCI (Figure 1A,B) p.......
The history of TPNI research stretches over several decades11,12. Early experiments with dogs and larger species established the importance of animal models in the study of TPNI outcomes36,37,38. Over time, these models have moved into smaller rodents, with their established and commonly used validated outcomes measures39,
This work was supported by grants from the NIH (K08 AR060164-01A) and DOD (W81XWH-16-1-0725; W81XWH-19-1-0773) in addition to institutional support from the Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
....Name | Company | Catalog Number | Comments |
Alcohol prep | COVIDIEN | 5110 | |
Buprenorphine | ZooPharm | BSRLAB0.5-211706 | |
C57BL/6J | Jackson Laboratories, Bar Harbor | N/A | |
Cotton tipped applicators | Puritan | 25-8062WC | |
Dissecting scissor | ASSI | ASSI.SDC18R8 | |
Fibrin glue-TISSEEL | Baxter | 1501263 | |
Force Sensitive Resistor (FSR) | N/A | FlexiForce A301 | |
Forceps | FST-Dumont | 5SF Inox, 11252-00 | |
GraphPad Prism | GraphPad Software Inc. | Version 8.4.3. | |
Homeothermic heating pad | Kent Scientific | RJ1675 | |
Ketamine/Ketaved | VEDCO | VED1220 | |
Microsurgical Forceps | Miltex Premium instruments | BL1901 | |
Ophthalmic lubricant ointment | Akorn Animal Health | NDC 59399-162-35 | |
Petri dish | VWR | 25384-092 | |
Phosphate-buffered saline | Gibco | 14190-144 | |
Povidone iodine | Solimo | L0017765SA | |
Precision pinch pressure sensor device | Custom made | N/A | |
Scissor | Miltex Premium | 21-536 | |
Stereo zoom binocular microscope | World Precision Instruments | Model PZMIII | |
Sterile gloves | Cardinal Health | 9L19E511 | |
Surgical staples | 3M-Precise | DS-25 | |
Surgical Tape | 3M-Microphore | 1530-0 | |
Sutures | Ethicon | BV130-5 | |
Syringe | BD syringe | 309597 | |
Trimmer | Philips Electronics | MG3750 | |
Xylazine/Anased | Akorn Animal Health, Inc. | VAM4811 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved