JoVE Logo
Faculty Resource Center

Sign In

Abstract

Neuroscience

Motor Imagery Brain-Computer Interface in Rehabilitation of Upper Limb Motor Dysfunction After Stroke

Published: September 1st, 2023

DOI:

10.3791/65405

1Guangzhou Medical University, 2Department of Rehabilitation Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, 3Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, 4Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, 5School of Traditional Chinese Medicine, Jinan University, 6Department of Stomatology, Second Clinical Medical College, Dongguan Campus of Guangdong Medical University
* These authors contributed equally

ERRATUM NOTICE

Important: There has been an erratum issued for this article. Read more …

The rehabilitation effect of patients with moderate or severe upper limb motor dysfunction after stroke is poor, which has been the focus of research owing to the difficulties encountered. Brain-computer interface (BCI) represents a hot frontier technology in brain neuroscience research. It refers to the direct conversion of the sensory perception, imagery, cognition, and thinking of users or subjects into actions, without reliance on peripheral nerves or muscles, to establish direct communication and control channels between the brain and external devices. Motor imagery brain-computer interface (MI-BCI) is the most common clinical application of rehabilitation as a non-invasive means of rehabilitation. Previous clinical studies have confirmed that MI-BCI positively improves motor dysfunction in patients after stroke. However, there is a lack of clinical operation demonstration. To that end, this study describes in detail the treatment of MI-BCI for patients with moderate and severe upper limb dysfunction after stroke and shows the intervention effect of MI-BCI through clinical function evaluation and brain function evaluation results, thereby providing ideas and references for clinical rehabilitation application and mechanism research.

Erratum

Erratum: Motor Imagery Brain-Computer Interface in Rehabilitation of Upper Limb Motor Dysfunction After Stroke

An erratum was issued for: Motor Imagery Brain-Computer Interface in Rehabilitation of Upper Limb Motor Dysfunction After Stroke. The Authors section was updated from:

Yongchun Jiang1,2,3
Junxiao Yin4
Biyi Zhao1,3,5
Yajie Zhang1,3
Tingting Peng1,3
Wanqi Zhuang1,3
Siqing Wang1,3
Siqi Huang1,3
Meilian Zhong1,2,3
Yanni Zhang1,3
Guibing Tang1,3
Bingchi Shen6
Haining Ou1,3
Yuxin Zheng2,3 
Qiang Lin2,3
1Guangzhou Medical University
2Department of Rehabilitation Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University
3Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University
4Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Traditional Chinese Medicine
5School of Traditional Chinese Medicine, Jinan University
6Department of Stomatology, Second Clinical Medical College, Dongguan Campus of Guangdong Medical University
 

to:

Yongchun Jiang1,2,3
Junxiao Yin4
Biyi Zhao1,3,5
Yajie Zhang1,3
Tingting Peng1,3
Wanqi Zhuang1,3
Siqing Wang1,3
Siqi Huang1,3
Meilian Zhong1,3
Yanni Zhang1,3
Guibing Tang1,3
Bingchi Shen6
Haining Ou1,3
Yuxin Zheng2,3 
Qiang Lin2,3
1Guangzhou Medical University
2Department of Rehabilitation Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University
3Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University
4Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Traditional Chinese Medicine
5School of Traditional Chinese Medicine, Jinan University
6Department of Stomatology, Second Clinical Medical College, Dongguan Campus of Guangdong Medical University
 

Tags

Motor Imagery Brain Computer Interface

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved