A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes the design, creation, and application of rapamycin-regulated phosphatases. This method provides high specificity and tight temporal control of phosphatase activation in living cells.
Tyrosine phosphatases are an important family of enzymes that regulate critical physiological functions. They are often dysregulated in human diseases, making them key targets of biological studies. Tools that enable the regulation of phosphatase activity are instrumental in the dissection of their function. Traditional approaches, such as overexpression of constitutively active or dominant negative mutants, or downregulation using siRNA, lack temporal control. Phosphatase inhibitors often have poor specificity, and they only allow researchers to determine what processes are affected by the inhibition of the phosphatase.
We developed a chemogenetic approach, the Rapamycin-regulated (RapR) system, which allows for allosteric regulation of a phosphatase catalytic domain that enables tight temporal control of phosphatase activation. The RapR system consists of an iFKBP domain inserted into an allosteric site in the phosphatase. The intrinsic structural dynamics of the RapR domain disrupt the catalytic domain, leading to the inactivation of the enzyme. The addition of rapamycin mediates the formation of a complex between iFKBP and a co-expressed FRB protein, which stabilizes iFKBP and restores activity to the phosphatase's catalytic domain.
This system provides high specificity and tight temporal control of phosphatase activation in living cells. The unique capabilities of this system enable the identification of transient events and interrogation of individual signaling pathways downstream of a phosphatase. This protocol describes guidelines for the development of a RapR-phosphatase, its biochemical characterization, and the analysis of its effects on downstream signaling and regulation of cell morphodynamics. It also provides a detailed description of a protein engineering strategy, in vitro assays analyzing phosphatase activity, and live cell imaging experiments identifying changes in cell morphology.
Protein tyrosine phosphatases are a critical family of proteins involved in a plethora of cell signaling events. They have been shown to play a key role in the regulation of cell proliferation, migration, and apoptosis1,2,3. Consequently, the dysregulation of protein tyrosine phosphatases leads to a variety of debilitating diseases and disorders4,5,6,7. Studying the physiological function of tyrosine phosphatases and their role in the development of....
1. Design of RapR-phosphatases
Figure 4Â demonstrates results that can be expected from the paxillin-based phosphatase activity assay. In this experiment, constitutively active and dominant negative Shp2 phosphatase activity was compared to that of active and inactive RapR-Shp2 using phospho-paxillin as the readout. The Shp2 constructs were immunoprecipitated and subjected to the activity assay as described in the protocol. The phospho-paxillin readouts for constitutively active Shp2 and active RapR-Shp2 were similar,.......
This protocol provides detailed steps for the development, characterization, and application of chemogenetically controlled phosphatases. The RapR-Shp2 tool relies on a rapamycin-regulated switch inserted in the Shp2 catalytic domain. The strength of this tool is the specificity and tight temporal control of phosphatase activity. The tool is applicable to other phosphatases and, in combination with previously described RapR-TAP technology, allows for the reconstruction of individual downstream signaling pathways
The authors acknowledge Dr. Jordan Fauser for her contribution to the development of RapR-Shp2 and associated protocols. The work was supported by a 5R35GM145318 award from NIGMS, an R33CA258012 award from NCI, and a P01HL151327 award from NHLBI.
....Name | Company | Catalog Number | Comments |
#1.5 Glass Coverslips 25 mm Round | Warner Instruments | 64-0715 | |
1.5 mL Tubes | USA Scientific | cc7682-3394 | |
2x Laemmli Buffer | For 500 mL: 5.18 g Tris-HCL, 131.5 mL glycerol, 52.5 mL 20% SDS, 0.5 g bromophenol blue, final pH 6.8 | ||
4-20% Mini-PROTEAN TGX Precast Gel | Biorad | 4561096 | |
5x Phusion Plus Buffer | Thermo Scientific | F538L | |
A431 Cells | ATCC | CRL-1555 | |
Agarsose | GoldBiotech | A-201 | |
Attofluor Cell Chamber | invitrogen | A7816 | |
Benchmark Fetal Bovine Serum (FBS) | Gemini Bio-products | 100-106 | Heat Inactivated Triple 0.1 µm sterile-filtered |
Brig 35,30 w/v % | Acros | 329581000 | |
BSA | GoldBiotech | A-420 | |
CellGeo | N/A | N/A | Published in 10.1083/jcb.201306067 |
CellMask Deep Red plasma membrane dye | invitrogen | c10046 | |
Colony Screen MasterMix | Genesee | 42-138 | |
DH5a competent cells | NEB | C2987H | |
DMEM | Corning | 15-013-CV | |
DMSO | Thermo Scientific | F-515 | |
DNA Ladder | GoldBio | D010-500 | |
dNTPs | NEB | N04475 | |
DpnI Enzyme | NEB | R01765 | |
DTT | GoldBio | DTT10 | DL-Dithiothreitol, Cleland's Reagents |
EGTA | Acros | 409910250 | |
Fibronectin from bovine plasma | Sigma | F1141 | |
FuGENE(R) 6 Transfection Reagent | Promega | E2692 | transfection reagent |
Gel extraction Kit | Thermo Scientific | K0692 | GeneJET Gel Extraction Kit |
Gel Green Nucleic Acid Stain | GoldBio | G-740-500 | |
Gel Loading Dye Purple 6x | NEB | B7024A | |
Glutamax | Gibco | 35050-061 | GlutaMAX-l (100x) 100 mL |
HEK 293T Cells | ATCC | CRL-11268 | |
HeLa Cells | ATCC | CRM-CCL-2 | |
HEPES | Fischer | BP310-500 | |
ImageJ Processing Software | N/A | N/A | |
Igepal CA-630 (NP40) | Sigma | I3021 | |
Imidazole Buffer | 25 mM Imidazole pH 7.2, 2.5 mM EDTA, 50 mM NaCl, 5 mM DTT | ||
KCl | Sigma | P-4504 | |
L-15 1x | Corning | 10-045-CV | |
LB Agar | Fisher | BP1425-2 | |
Lysis Buffer | 20 mM Hepes-KOH, pH 7.8, 50 mM KCl, 1 mM EGTA, 1% NP40 | ||
MATLAB | MathWorks | N/A | R 2022b update was used to run CellGeo functions |
Metamorph Microscopy Automation and Image Analysis Software | N/A | N/A | |
MgCl2 | Fisher Chemical | M33-500 | |
Mineral Oil | Sigma | M5310 | |
MiniPrep Kit | Gene Choice | 96-308 | |
Mini-PROTEAN TGX Precast Gels 12 well | Bio-Rad | 4561085 | |
Molecular Biology Grade Water | Corning | 46-000-CV | |
Multiband Polychroic Mirror | Chroma Technology | 89903BS | |
NaCl | Fisher Chemical | S271-3 | |
Olympus UPlanSAPO 40x objective | Olympus | N/A | |
PBS w/o Ca and Mg | Corning | 21-031-CV | |
PCR Tubes | labForce | 1149Z65 | 0.2 mL 8-Strip Tubes and Caps, Rigid Strip Individually Attached Dome Caps |
Phusion Plus DNA Polymerase | Thermo Scientific | F630S | |
Primers | IDT | ||
Protein-G Sepharose | Millipore | 16-266 | |
PVDF Membranes | BioRad | 1620219 | Immun-Blot PVDF/Filter Paper Sandwiches |
Rapamycin | Fisher | AAJ62473MF | |
0.25% Trypsin, 2.21 mM EDTA, 1x [-] sodium | Corning | 25-053-CI | |
Tris-Acetate-EDTA (TAE) 50x | Fischer | BP1332-1 | for electrophoresis |
Wash Buffer | 20 mM Hepes-KOH, pH 7.8, 50 mM KCl, 100 mM NaCl, 1 mM EGTA, 1% NP40 | ||
β-Mercaptoethanol | Fisher Chemical | O3446I-100 | |
Antibodies | |||
Anti-EGFR Antibody | Cell Signaling | 2232 | |
Anti-Erk 1/2 Antibody | Cell Signaling | 9102 | |
Anti-Flag Antibody | Millipore-Sigma | F3165 | |
Anti-GAPDH Antibody | invitrogen | AM4300 | |
Anti-GFP Antibody | Clontech | 632380 | |
Anti-mCherry Antibody | invitrogen | M11217 | |
Anti-paxillin Antibody | Thermo Fischer | BDB612405 | |
Anti-phospho-EGFR Y992 Antibody | Cell Signaling | 2235 | |
Anti-phospho-Erk 1/2 T202/Y204 Antibody | Cell Signaling | 9101 | |
Anti-phospho-paxillin Y31 Antibody | Millipore-Sigma | 05-1143 | |
Anti-phospho-PLCγ Y783 Antibody | Cell Signaling | 14008 | |
Anti-PLCγ Antibody | Cell Signaling | 5690 |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved