Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the design, creation, and application of rapamycin-regulated phosphatases. This method provides high specificity and tight temporal control of phosphatase activation in living cells.

Abstract

Tyrosine phosphatases are an important family of enzymes that regulate critical physiological functions. They are often dysregulated in human diseases, making them key targets of biological studies. Tools that enable the regulation of phosphatase activity are instrumental in the dissection of their function. Traditional approaches, such as overexpression of constitutively active or dominant negative mutants, or downregulation using siRNA, lack temporal control. Phosphatase inhibitors often have poor specificity, and they only allow researchers to determine what processes are affected by the inhibition of the phosphatase.

We developed a chemogenetic approach, the Rapamycin-regulated (RapR) system, which allows for allosteric regulation of a phosphatase catalytic domain that enables tight temporal control of phosphatase activation. The RapR system consists of an iFKBP domain inserted into an allosteric site in the phosphatase. The intrinsic structural dynamics of the RapR domain disrupt the catalytic domain, leading to the inactivation of the enzyme. The addition of rapamycin mediates the formation of a complex between iFKBP and a co-expressed FRB protein, which stabilizes iFKBP and restores activity to the phosphatase's catalytic domain.

This system provides high specificity and tight temporal control of phosphatase activation in living cells. The unique capabilities of this system enable the identification of transient events and interrogation of individual signaling pathways downstream of a phosphatase. This protocol describes guidelines for the development of a RapR-phosphatase, its biochemical characterization, and the analysis of its effects on downstream signaling and regulation of cell morphodynamics. It also provides a detailed description of a protein engineering strategy, in vitro assays analyzing phosphatase activity, and live cell imaging experiments identifying changes in cell morphology.

Introduction

Protein tyrosine phosphatases are a critical family of proteins involved in a plethora of cell signaling events. They have been shown to play a key role in the regulation of cell proliferation, migration, and apoptosis1,2,3. Consequently, the dysregulation of protein tyrosine phosphatases leads to a variety of debilitating diseases and disorders4,5,6,7. Studying the physiological function of tyrosine phosphatases and their role in the development of....

Protocol

1. Design of RapR-phosphatases

  1. Planning
    NOTE: Using RapR-Shp2 as an example, this protocol details the important steps for creating a rapamycin-regulated tyrosine phosphatase. The described protocol is optimized for Shp2 and additional modifications might be needed to fit specific properties of individual phosphatases.
    1. To ensure that the catalytic activity of Shp2 is purely controlled by rapamycin and not by endogenous mechanisms, introduce a mutation into the phosphatase t.......

Representative Results

Figure 4 demonstrates results that can be expected from the paxillin-based phosphatase activity assay. In this experiment, constitutively active and dominant negative Shp2 phosphatase activity was compared to that of active and inactive RapR-Shp2 using phospho-paxillin as the readout. The Shp2 constructs were immunoprecipitated and subjected to the activity assay as described in the protocol. The phospho-paxillin readouts for constitutively active Shp2 and active RapR-Shp2 were similar,.......

Discussion

This protocol provides detailed steps for the development, characterization, and application of chemogenetically controlled phosphatases. The RapR-Shp2 tool relies on a rapamycin-regulated switch inserted in the Shp2 catalytic domain. The strength of this tool is the specificity and tight temporal control of phosphatase activity. The tool is applicable to other phosphatases and, in combination with previously described RapR-TAP technology, allows for the reconstruction of individual downstream signaling pathways

Acknowledgements

The authors acknowledge Dr. Jordan Fauser for her contribution to the development of RapR-Shp2 and associated protocols. The work was supported by a 5R35GM145318 award from NIGMS, an R33CA258012 award from NCI, and a P01HL151327 award from NHLBI.

....

Materials

NameCompanyCatalog NumberComments
#1.5 Glass Coverslips 25 mm RoundWarner Instruments64-0715
1.5 mL TubesUSA Scientificcc7682-3394
2x Laemmli BufferFor 500 mL: 5.18 g Tris-HCL, 131.5 mL glycerol, 52.5 mL 20% SDS, 0.5 g bromophenol blue, final pH 6.8
4-20% Mini-PROTEAN TGX Precast GelBiorad4561096
5x Phusion Plus BufferThermo ScientificF538L
A431 CellsATCCCRL-1555
AgarsoseGoldBiotechA-201
Attofluor Cell ChamberinvitrogenA7816
Benchmark Fetal Bovine Serum (FBS)Gemini Bio-products100-106Heat Inactivated Triple 0.1 µm sterile-filtered
Brig 35,30 w/v %Acros329581000
BSAGoldBiotechA-420
CellGeoN/AN/APublished in 10.1083/jcb.201306067
CellMask Deep Red plasma membrane dyeinvitrogenc10046
Colony Screen MasterMixGenesee42-138
DH5a competent cellsNEBC2987H
DMEMCorning15-013-CV
DMSOThermo ScientificF-515
DNA LadderGoldBioD010-500
dNTPsNEBN04475
DpnI EnzymeNEBR01765
DTTGoldBioDTT10DL-Dithiothreitol, Cleland's Reagents
EGTAAcros409910250
Fibronectin from bovine plasmaSigmaF1141
FuGENE(R) 6 Transfection ReagentPromegaE2692transfection reagent
Gel extraction KitThermo ScientificK0692GeneJET Gel Extraction Kit
Gel Green Nucleic Acid StainGoldBioG-740-500
Gel Loading Dye Purple 6xNEBB7024A
GlutamaxGibco35050-061GlutaMAX-l (100x) 100 mL
HEK 293T CellsATCCCRL-11268
HeLa CellsATCCCRM-CCL-2
HEPESFischerBP310-500
ImageJ Processing SoftwareN/AN/A
Igepal CA-630 (NP40)SigmaI3021
Imidazole Buffer25 mM Imidazole pH 7.2, 2.5 mM EDTA, 50 mM NaCl, 5 mM DTT
KClSigmaP-4504
L-15 1xCorning10-045-CV
LB AgarFisherBP1425-2
Lysis Buffer20 mM Hepes-KOH, pH 7.8, 50 mM KCl, 1 mM EGTA, 1% NP40
MATLABMathWorksN/AR 2022b update was used to run CellGeo functions
Metamorph Microscopy Automation and Image Analysis SoftwareN/AN/A
MgCl2Fisher ChemicalM33-500
Mineral OilSigmaM5310
MiniPrep KitGene Choice96-308
Mini-PROTEAN TGX Precast Gels 12 wellBio-Rad4561085
Molecular Biology Grade WaterCorning46-000-CV
Multiband Polychroic MirrorChroma Technology89903BS
NaClFisher ChemicalS271-3
Olympus UPlanSAPO 40x objectiveOlympusN/A
PBS w/o Ca and MgCorning21-031-CV
PCR TubeslabForce1149Z650.2 mL 8-Strip Tubes and Caps, Rigid Strip Individually Attached Dome Caps
Phusion Plus DNA PolymeraseThermo ScientificF630S
PrimersIDT
Protein-G SepharoseMillipore16-266
PVDF MembranesBioRad1620219Immun-Blot PVDF/Filter Paper Sandwiches
RapamycinFisherAAJ62473MF
0.25% Trypsin, 2.21 mM EDTA, 1x [-] sodiumCorning25-053-CI
Tris-Acetate-EDTA (TAE) 50xFischerBP1332-1for electrophoresis
Wash Buffer20 mM Hepes-KOH, pH 7.8, 50 mM KCl, 100 mM NaCl, 1 mM EGTA, 1% NP40
β-MercaptoethanolFisher ChemicalO3446I-100
Antibodies
Anti-EGFR AntibodyCell Signaling2232
Anti-Erk 1/2 AntibodyCell Signaling9102
Anti-Flag AntibodyMillipore-SigmaF3165
Anti-GAPDH AntibodyinvitrogenAM4300
Anti-GFP AntibodyClontech632380
Anti-mCherry AntibodyinvitrogenM11217
Anti-paxillin AntibodyThermo FischerBDB612405
Anti-phospho-EGFR Y992 AntibodyCell Signaling2235
Anti-phospho-Erk 1/2 T202/Y204 AntibodyCell Signaling9101
Anti-phospho-paxillin Y31 AntibodyMillipore-Sigma05-1143
Anti-phospho-PLCγ Y783 AntibodyCell Signaling14008
Anti-PLCγ AntibodyCell Signaling5690

References

  1. Amin, A. R. M. R., et al. SHP-2 tyrosine phosphatase inhibits p73-dependent apoptosis and expression of a subset of p53 target genes induced by EGCG. Proc Natl Acad Sci U S A. 104 (13), 5419-5424 (2007).
  2. Niogret, C., et al.

Explore More Articles

Biology

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved