Sign In

Alkenes react with water in the presence of an acid to form an alcohol. In the absence of acid, hydration of alkenes does not occur at a significant rate, and the acid is not consumed in the reaction. Therefore, alkene hydration is an acid-catalyzed reaction.

Figure1

Strong acids, such as sulfuric acid, dissociate completely in an aqueous solution, and the acid participating in the reaction is the hydronium ion.

Figure2

The first step is the slow protonation of an alkene at the less-substituted end to form the more-substituted carbocation.

Figure3

The second step is the nucleophilic attack by water at the carbocation to give an oxonium ion.

Figure4

In the last step, water, with a pKa of 15.7, acts as a base and deprotonates the acidic oxonium ion (protonated alcohol), which has a pKa of approximately –2, to yield the final product.

Figure5

The two processes, hydration of alkenes to form alcohols and the dehydration of alcohols to form alkenes, are in equilibrium with each other. The control over this equilibrium can be explained by Le Chatelier’s principle, which states that a system at equilibrium will adjust to minimize any stress placed on the system.

In the hydration of 2-methylpropene, water is on the left side of the reaction. When the amount of water increases, the equilibrium shifts towards the right, producing more alcohol. In contrast, eliminating water from the system shifts the equilibrium to produce more alkene. Thus, the presence of dilute acids favors the formation of alcohols from alkenes, while the reverse occurs in the presence of concentrated acids that contain very little water.

Addition reactions are temperature-dependent. The enthalpy term for these reactions is negative as new bonds are formed during the process. In contrast, the entropy term is positive as the two reactant molecules give one molecule of product.

At low temperatures, the entropy term is small and the enthalpy term dominates. Thus, the Gibbs free energy is negative, and the equilibrium constant being greater than one promotes the formation of product over reactants.

Figure7

However, at high temperatures, the large entropy term dominates the enthalpy term and the Gibbs free energy is positive. The equilibrium constant being less than one reverses the reaction, implying that reactants will be favored over products.

Figure7

Tags

Acid catalyzed HydrationAlkenesWaterAlcohol FormationAcid ConsumptionHydronium IonProtonationCarbocationNucleophilic AttackOxonium IonDeprotonationEquilibriumLe Chatelier s Principle2 methylpropeneDilute Acids

From Chapter 8:

article

Now Playing

8.5 : Acid-Catalyzed Hydration of Alkenes

Reactions of Alkenes

12.9K Views

article

8.1 : الانتقائية للضافات المحبة للكهرباء - تأثير بيروكسيد

Reactions of Alkenes

8.0K Views

article

8.2 : التفاعل المتسلسل للجذور الحرة وبلمرة الألكينات

Reactions of Alkenes

7.3K Views

article

8.3 : هالوجين الألكينات

Reactions of Alkenes

14.8K Views

article

8.4 : تشكيل الهالوهيدرن من الألكينات

Reactions of Alkenes

12.4K Views

article

8.6 : الانتقائية والكيمياء الفراغية للترطيب المحفز بالأحماض

Reactions of Alkenes

8.2K Views

article

8.7 : Oxymercuration-الحد من الألكينات

Reactions of Alkenes

7.1K Views

article

8.8 : الأكسدة المائية للألكينات

Reactions of Alkenes

7.3K Views

article

8.9 : الانتقائية والكيمياء الفراغية للثقب المائي

Reactions of Alkenes

7.9K Views

article

8.10 : أكسدة الألكينات: ثنائي هيدروكسيل المزامنة مع رابع أكسيد الأوزميوم

Reactions of Alkenes

9.5K Views

article

8.11 : أكسدة الألكينات: ثنائي هيدروكسيل متزامن مع برمنجنات البوتاسيوم

Reactions of Alkenes

10.2K Views

article

8.12 : أكسدة الألكينات: مضاد ثنائي هيدروكسيل مع أحماض البيروكسي

Reactions of Alkenes

5.2K Views

article

8.13 : الانقسام التأكسدي للألكينات: تحلل الأزونويل

Reactions of Alkenes

9.5K Views

article

8.14 : الحد من الألكينات: الهدرجة الحفازة

Reactions of Alkenes

11.5K Views

article

8.15 : تقليل الألكينات: الهدرجة الحفازة غير المتماثلة

Reactions of Alkenes

3.2K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved