Sign In

The expected value is known as the "long-term" average or mean. This means that over the long term of experimenting over and over, you would expect this average. The expected average is represented by the symbol μ. It is calculated as follows:

Equation1

In the equation, x is an event, and P(x) is the probability of the event occurring.

The expected value has practical applications in decision theory.

This text is adapted from Openstax, Introductory Statistics, Section 4.2 Mean or Expected Value and Standard Deviation.

Tags
Expected ValueLong term AverageMeanProbabilityDecision TheoryOpenstaxIntroductory StatisticsEventP xStandard Deviation

From Chapter 6:

article

Now Playing

6.6 : Expected Value

Probability Distributions

3.7K Views

article

6.1 : الاحتمالات في الإحصاء

Probability Distributions

11.9K Views

article

6.2 : المتغيرات العشوائية

Probability Distributions

11.0K Views

article

6.3 : توزيعات الاحتمالات

Probability Distributions

6.3K Views

article

6.4 : المخططات التكرارية الاحتمالية

Probability Distributions

10.7K Views

article

6.5 : نتائج غير عادية

Probability Distributions

3.1K Views

article

6.7 : توزيع الاحتمالات ذات الحدين

Probability Distributions

9.9K Views

article

6.8 : توزيع احتمالات بواسون

Probability Distributions

7.6K Views

article

6.9 : التوزيع الموحد

Probability Distributions

4.6K Views

article

6.10 : التوزيع الطبيعي

Probability Distributions

10.3K Views

article

6.11 : درجات z والمساحة تحت المنحنى

Probability Distributions

10.2K Views

article

6.12 : تطبيقات التوزيع الطبيعي

Probability Distributions

4.8K Views

article

6.13 : توزيع العينات

Probability Distributions

11.1K Views

article

6.14 : نظرية الحد المركزي

Probability Distributions

13.3K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved