S'identifier

The expected value is known as the "long-term" average or mean. This means that over the long term of experimenting over and over, you would expect this average. The expected average is represented by the symbol μ. It is calculated as follows:

Equation1

In the equation, x is an event, and P(x) is the probability of the event occurring.

The expected value has practical applications in decision theory.

This text is adapted from Openstax, Introductory Statistics, Section 4.2 Mean or Expected Value and Standard Deviation.

Tags
Expected ValueLong term AverageMeanProbabilityDecision TheoryOpenstaxIntroductory StatisticsEventP xStandard Deviation

Du chapitre 6:

article

Now Playing

6.6 : Expected Value

Probability Distributions

3.7K Vues

article

6.1 : Probabilité en statistiques

Probability Distributions

11.9K Vues

article

6.2 : Variables aléatoires

Probability Distributions

11.0K Vues

article

6.3 : Distributions de probabilité

Probability Distributions

6.3K Vues

article

6.4 : Histogrammes de probabilité

Probability Distributions

10.7K Vues

article

6.5 : Des résultats inhabituels

Probability Distributions

3.1K Vues

article

6.7 : Distribution de probabilité binomiale

Probability Distributions

9.9K Vues

article

6.8 : Distribution de probabilité de Poisson

Probability Distributions

7.6K Vues

article

6.9 : Distribution uniforme

Probability Distributions

4.6K Vues

article

6.10 : Distribution normale

Probability Distributions

10.3K Vues

article

6.11 : Scores z et aire sous la courbe

Probability Distributions

10.2K Vues

article

6.12 : Applications de la distribution normale

Probability Distributions

4.8K Vues

article

6.13 : Distribution de l’échantillonnage

Probability Distributions

11.1K Vues

article

6.14 : Théorème central limite

Probability Distributions

13.3K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.