Improved understanding of pancreatic cancer biology is critically needed to enable the development of better therapeutic options to treat pancreatic cancer. To address this need, we demonstrate an orthotopic model of pancreatic cancer that permits non-invasive monitoring of cancer progression using in vivo bioluminescence imaging.
We describe a simple, quantitative colorimetric assay that specifically measures the proteolytic activity of human, mouse or rat Granzyme B (GzmB). This protocol can be easily adapted for determining protease activity of other granule serine proteases by the hydrolysis of other synthetic peptide substrates with an appropriate recognition sequence.
We describe a simple cell-based bioassay for detecting, quantifying and monitoring the activity of members of the vascular endothelial growth factor family of ligands. The assay uses chimeric receptors expressed in a factor-dependent cell line to provide a semi-quantitative or quantitative assessment of receptor binding and cross-linking by the ligand.
This study implemented whole genome sequencing for analysis of mutations in genes conferring antifungal drug resistance in Candida glabrata. C. glabrata isolates resistant to echinocandins, azoles and 5-flucytosine, were sequenced to illustrate the methodology. Susceptibility profiles of the isolates correlated with presence or absence of specific mutation patterns in genes.
This paper describes a method for modeling total intravenous anesthesia (TIVA) during cancer resection surgery in mice. The goal is to replicate key features of anesthesia delivery to patients with cancer. The method allows investigation of how anesthetic technique affects cancer recurrence after resection surgery.
关于 JoVE
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。