登录

Johns Hopkins School of Medicine

24 ARTICLES PUBLISHED IN JoVE

image

Biology

ALS - Motor Neuron Disease: Mechanism and Development of New Therapies
Jeffrey D. Rothstein 1
1Department of Neurology, Johns Hopkins University

Jeffrey D. Rothstein speaks about the pathology and mechanisms underlying amyotrophic lateral sclerosis or ALS, advances in ALS research, and current strategies towards the development of therapies.

image

Biology

In vitro and in vivo Bioluminescence Reporter Gene Imaging of Human Embryonic Stem Cells
Kitchener Wilson 1, Jin Yu 1, Andrew Lee 1, Joseph C. Wu 1
1Departments of Radiology and Medicine (Cardiology), Stanford University School of Medicine

With the growing interest in stem cell therapies, molecular imaging techniques are ideal for monitoring stem cell behavior after transplantation. Luciferase reporter genes have enabled non-invasive, repetitive assessment of cell survival, location, and proliferation in vivo. This video will demonstrate how to track hESC proliferation in a living mouse.

image

Medicine

Surgical Management of Meatal Stenosis with Meatoplasty
Ming-Hsien Wang 1
1Department of Urology, Pediatric Urology, Johns Hopkins School of Medicine

Meatoplasty, surgical management of meatal stenosis.

image

Neuroscience

In vivo Electroporation of Developing Mouse Retina
Jimmy de Melo 1, Seth Blackshaw 1,2,3,4,5
1Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, 2Department of Neurology, Johns Hopkins School of Medicine, 3Department of Ophthalmology, Johns Hopkins School of Medicine, 4Center for High-Throughput Biology, Johns Hopkins School of Medicine, 5Institute for Cell Engineering, Johns Hopkins School of Medicine

A method for the incorporation of plasmid DNA into murine retinal cells for the purpose of performing either gain- or loss of function studies in vivo is presented. This method capitalizes on the transient increase in permeability of cell plasma membranes induced by the application of an external electrical field.

image

Neuroscience

Derivation of Glial Restricted Precursors from E13 mice
André W. Phillips 1,2, Sina Falahati 1,2, Roshi DeSilva 1,3, Irina Shats 2, Joel Marx 1, Edwin Arauz 1, Douglas A. Kerr 4, Jeffrey D. Rothstein 2,5, Michael V. Johnston 1,2,6, Ali Fatemi 1,2,6
1Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University, 2Department of Neurology, Johns Hopkins School of Medicine, 3University of Maryland , 4Experimental Neurology, Biogen Idec, 5The Brain Science Institute, Johns Hopkins School of Medicine, 6Department of Pediatrics, Johns Hopkins School of Medicine

This protocol outlines the derivation of Glial Restricted Precursors from fetal spinal cords and maintained in vitro either for transplantation or for the study of oligodendrocytic lineage.

image

Biology

Nano-fEM: Protein Localization Using Photo-activated Localization Microscopy and Electron Microscopy
Shigeki Watanabe 1, Jackson Richards 1, Gunther Hollopeter 1, Robert J. Hobson 1, Wayne M. Davis 1, Erik M. Jorgensen 1
1Department of Biology, Howard Hughes Medical Institute, University of Utah

We describe a method to localize fluorescently tagged proteins in electron micrographs. Fluorescence is first localized using photo-activated localization microscopy on ultrathin sections. These images are then aligned to electron micrographs of the same section.

image

Neuroscience

Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Daniel A. Lee 1,2, Juan Salvatierra 2, Esteban Velarde 3, John Wong 3, Eric C. Ford 4, Seth Blackshaw 2,5
1Division of Biology, California Institute of Technology, 2Solomon H. Snyder Department of Neuroscience, Neurology, and Ophthalamology, Johns Hopkins University School of Medicine, 3Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 4Department of Radiation Oncology, University Of Washington Medical Center, 5Institute for Cell Engineering and High-Throughput Biology Center, Johns Hopkins University School of Medicine

The function of adult-born mammalian neurons remains an active area of investigation. Ionizing radiation inhibits the birth of new neurons. Using computer tomography-guided focal irradiation (CFIR), three-dimensional anatomical targeting of specific neural progenitor populations can now be used to assess the functional role of adult neurogenesis.

image

Medicine

Fast and Accurate Exhaled Breath Ammonia Measurement
Steven F. Solga 1, Matthew L. Mudalel 1, Lisa A. Spacek 2, Terence H. Risby 3
1Internal Medicine, St. Luke's University Hospital, 2Internal Medicine, Johns Hopkins School of Medicine, 3Bloomberg School of Public Health, Johns Hopkins University

Ammonia is an important physiologic metabolite relevant to various disease and wellness states. It is also a difficult molecule to measure in breath, which demands particular precautions be taken to obtain accurate results. Not all factors influencing ammonia are known, but progress can be difficult without accounting for these factors.

image

Biology

Detection and Analysis of DNA Damage in Mouse Skeletal Muscle In Situ Using the TUNEL Method
Saniya Fayzullina 1, Lee J. Martin 1
1Division of Neuropathology, Department of Pathology, Pathobiology Graduate Program, Johns Hopkins School of Medicine

This video describes dissection, tissue processing, sectioning, and fluorescence-based TUNEL labeling of mouse skeletal muscle. It also describes a method for semi-automated analysis of TUNEL labeling.

image

Developmental Biology

Ex Vivo Culture of Pharyngeal Arches to Study Heart and Muscle Progenitors and Their Niche
Peter Andersen 1, Chulan Kwon 1
1Division of Cardiology, Institute for Cell Engineering, Johns Hopkins University School of Medicine

Here, we present a protocol to culture pharyngeal arches to study the biology of heart and muscle progenitor cells and their microenvironment.

image

Bioengineering

Solid Lipid Nanoparticles (SLNs) for Intracellular Targeting Applications
Xiomara Calderón-Colón 1, Giorgio Raimondi 2, Jason J. Benkoski 1, Julia B. Patrone 3
1Research and Exploratory Development Department, The Johns Hopkins Applied Physics Laboratory, 2Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, 3Asymmetric Operations Sector, The Johns Hopkins Applied Physics Laboratory

In this study, a method for synthesizing ultra-small populations of biocompatible nanoparticles was described, as well as several in vitro methods by which to assess their cellular interactions.

image

Medicine

Orthotopic Hind Limb Transplantation in the Mouse
Georg J. Furtmüller *1, Byoungchol Oh *1, Johanna Grahammer *2, Cheng-Hung Lin 3, Robert Sucher 4, Madeline L. Fryer 1, Giorgio Raimondi 1, W.P. Andrew Lee 1, Gerald Brandacher 1
1Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, 2Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 3Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital and School of Medicine, 4Department of General, Visceral and Transplant Surgery, Charite Berlin

This novel model for orthotopic hind limb transplantation in the mouse, applying a non-suture cuff technique for super-microvascular anastomosis, provides a powerful tool for in vivo mechanistic immunological research related to vascularized composite allotransplantation (VCA).

image

Biology

Flash-and-Freeze: A Novel Technique to Capture Membrane Dynamics with Electron Microscopy
Shuo Li *1,2, Sumana Raychaudhuri *1, Shigeki Watanabe 1,3
1Department of Cell Biology, Johns Hopkins School of Medicine, 2Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 3Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine

We developed a novel technique in electron microscopy, "flash-and-freeze," that enables the visualization of membrane dynamics with ms temporal resolution. This technique combines the optogenetic stimulation of neurons with high-pressure freezing. Here, we demonstrate the procedures and describe the protocols in detail.

image

Medicine

Posterior Semicircular Canal Approach for Inner Ear Gene Delivery in Neonatal Mouse
Kevin Isgrig 1, Wade W. Chien 1,2
1National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 2Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine

In this study, we describe the posterior semicircular canal approach as a reliable method for inner ear gene delivery in neonatal mice. We show that gene delivery through the posterior semicircular canal is able to perfuse the entire inner ear.

image

Developmental Biology

Long-term Behavioral and Reproductive Consequences of Embryonic Exposure to Low-dose Toxicants
Mahlet D. Mersha 1, Karla R. Sanchez 2, Murali K. Temburni 2, Harbinder S. Dhillon 2
1Department of Neurology, Johns Hopkins School of Medicine, 2Department of Biological Sciences, Delaware State University

Exposure to environmental toxicants can acutely impact development with long-term effects. Detailed protocols are provided to illustrate a strategy using an effective lab model to study the effect of early embryonic exposure to bisphenol A. We provide fecundity and behavioral assays to monitor the effectiveness of our toxicant exposure bio-assays.

image

Generation of Three-dimensional Printed Biological Innovative Mold for Optically Transparent Tissue Specimens
Sean J. Miller 1,2,3, Jeffrey D. Rothstein 1,2,3
1Department of Neurology, Johns Hopkins University School of Medicine, 2The Brain Science Institute, Johns Hopkins University School of Medicine, 3Cellular & Molecular Medicine, Johns Hopkins University School of Medicine

Tissue innovative Molds (iMolds) have been developed to reduce specimen movement, structurally support the specimen being imaged, and allow for repeated imaging on precise anatomical locations using optically-transparent samples.

image

Developmental Biology

Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency
Tea Soon Park *1, Ludovic Zimmerlin *1, Rebecca Evans-Moses 1, Elias T. Zambidis 1
1Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine

We present a protocol for efficient, bulk, and rapid chemical reversion of conventional lineage-primed human pluripotent stem cells (hPSC) into an epigenomically-stable naïve preimplantation epiblast-like pluripotent state. This method results in decreased lineage-primed gene expression and marked improvement in directed multilineage differentiation across a broad repertoire of conventional hPSC lines.

image

JoVE Journal

A Rat Methyl-Seq Platform to Identify Epigenetic Changes Associated with Stress Exposure
Jenny L. Carey 1, Olivia H. Cox 1, Fayaz Seifuddin 1, Leonard Marque 1, Kellie L.K. Tamashiro 1, Peter P. Zandi 1,3, Gary S. Wand 1,2, Richard S. Lee 1
1Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 2Department of Medicine, Johns Hopkins School of Medicine, 3Department of Mental Health, Johns Hopkins School of Public Health

Here, we describe the protocol and implementation of Methyl-Seq, an epigenomic platform, using a rat model to identify epigenetic changes associated with chronic stress exposure. Results demonstrate that the rat Methyl-Seq platform is capable of detecting methylation differences that arise from stress exposure in rats.

image

Developmental Biology

In Vitro Generation of Heart Field-specific Cardiac Progenitor Cells
Emmanouil Tampakakis 1, Matthew Miyamoto 1, Chulan Kwon 1
1Division of Cardiology, Department Medicine, Johns Hopkins School of Medicine

The purpose of this method is to generate heart field-specific cardiac progenitor cells in vitro in order to study the progenitor cell specification and functional properties, and to generate chamber specific cardiac cells for heart disease modelling.

image

Bioengineering

Design of a Biocompatible Drug-Eluting Tracheal Stent in Mice with Laryngotracheal Stenosis
Madhavi Duvvuri 1, Kevin Motz 2, Hsiu-Wen Tsai 2, Ioan Lina 2, Dacheng Ding 2, Andrew Lee 2, Alexander T. Hillel 2
1Department of General Surgery, University of California, San Francisco, 2Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine

Laryngotracheal stenosis results from pathologic scar deposition that critically narrows the tracheal airway and lacks effective medical therapies. Using a PLLA-PCL (70% poly-L-lactide and 30% polycaprolactone) stent as a local drug delivery system, potential therapies aimed at decreasing scar proliferation in the trachea can be studied.

image

Neuroscience

Multiplexed Analysis of Retinal Gene Expression and Chromatin Accessibility Using scRNA-Seq and scATAC-Seq
Kurt Weir *1, Patrick Leavey *1, Clayton Santiago 1, Seth Blackshaw 1,2,3,4,5,6
1Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 2Department of Psychiatry and Behavioral Science, The Johns Hopkins Hospital, 3Department of Ophthalmology, The Johns Hopkins Hospital, 4Department of Neurology, The Johns Hopkins Hospital, 5Institute for Cell Engineering, Johns Hopkins University School of Medicine, 6Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine

Here, the authors showcase the utility of MULTI-seq for phenotyping and subsequent paired scRNA-seq and scATAC-seq in characterizing the transcriptomic and chromatin accessibility profiles in retina.

image

Neuroscience

Nuclear Transport Assays in Permeabilized Mouse Cortical Neurons
Lindsey R. Hayes 1, Lauren Duan 1, Svetlana Vidensky 1, Petr Kalab 2
1Department of Neurology, Johns Hopkins School of Medicine, 2Whiting School of Engineering, Johns Hopkins University

We have developed a reliable method of selective plasma membrane permeabilization of primary mouse cortical neurons for high content automated analysis of neuronal nucleocytoplasmic transport.

image

Biology

Effective Oral RNA Interference (RNAi) Administration to Adult Anopheles gambiae Mosquitoes
Mabel Taracena 1,2, Catherine Hunt 1, Pamela Pennington 3, Deborah Andrew 4,5, Marcelo Jacobs-Lorena 5,6, Ellen Dotson 1, Michael Wells 5,7,8
1Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention, 2Department of Entomology, Cornell University, 3Centro de Estudios en Biotecnologia, Universidad del Valle de Guatemala, 4Department of Cell Biology, Johns Hopkins School of Medicine, 5Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 6Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health and Malaria Research Institute, 7Department of Cell Biology, Johns Hopkins School of Medicine, 8Biomedical Sciences Department, Idaho College of Osteopathic Medicine

The oral administration of dsRNA produced by bacteria, a delivery method for RNA interference (RNAi) that is routinely used in Caenorhabditis elegans, was successfully applied here to adult mosquitoes. Our method allows for robust reverse genetics studies and transmission-blocking vector studies without the use of injection.

image

Biology

Guinea Pig Round Window Membrane Explantation for Ex Vivo Studies
Sarek A. Shen 1, Mukund Madhav Goyal 2, Kelly Lane 1, Mohamed Lehar 1, Daniel Q. Sun 1,3
1Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, 2Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, 3Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine

This protocol outlines a method for the explantation of the round window membrane from guinea pig temporal bones, providing a valuable resource for ex vivo studies.

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。