We present a protocol on how to utilize high-throughput cryo-electron tomography to determine high resolution in situ structures of molecular machines. The protocol permits large amounts of data to be processed, avoids common bottlenecks and reduces resource downtime, allowing the user to focus on important biological questions.
The following paper presents a novel FE simulation technique (KBC-FE), which reduces computational cost by performing simulations on a cloud computing environment, through the application of individual modules. Moreover, it establishes a seamless collaborative network between world leading scientists, enabling the integration of cutting edge knowledge modules into FE simulations.
A highly promising technique to generate tissue constructs without using matrix is to culture cells in a simulated microgravity condition. Using a rotary culture system, we examined ovarian follicle growth and oocyte maturation in terms of follicle survival, morphology, growth, and oocyte function under the simulated microgravity condition.
This paper elaborates the sample and sensor preparation procedures and the protocols for using the test rig particularly for dynamic domain imaging with in situ BH measurements in order to achieve optimal domain pattern quality and accurate BH measurements.
Imaging of bacterial cells is an emerging systems biology approach focused on defining static and dynamic processes that dictate the function of large macromolecular machines. Here, integration of quantitative live cell imaging and cryo-electron tomography is used to study Legionella pneumophila type IV secretion system architecture and functions.
关于 JoVE
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。