In this article we describe the full experimental procedure to reconstruct, with high resolution, the fine brain anatomy of fluorescently labeled mouse brains. The described protocol includes sample preparation and clearing, specimen mounting for imaging, data post-processing and multi-scale visualization.
Two-photon imaging, coupled to laser nanodissection, are useful tools to study degenerative and regenerative processes in the central nervous system with subcellular resolution. This protocol shows how to label, image, and dissect single climbing fibers in the cerebellar cortex in vivo.
Here we describe the instrumentation and methods for detecting single fluorescently-labeled protein molecules interacting with a single DNA molecule suspended between two optically trapped microspheres.
Presented here is a comprehensive protocol to perform ultrafast force-clamp experiments on processive myosin-5 motors, which could be easily extended to the study of other classes of processive motors. The protocol details all the necessary steps, from the setup of the experimental apparatus to sample preparation, data acquisition and analysis.
We report a method for mesoscopic reconstruction of the whole mouse heart by combining new advancements in tissue transformation and staining with the development of an axially scanned light-sheet microscope.
关于 JoVE
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。