Drosophila hemocytes disperse over the entirety of the developing embryo. This protocol demonstrates how to mount and image these migrations using embryos with fluorescently labelled hemocytes.
Medaka and zebrafish are complementary for genetic dissection of vertebrate genome functions. This protocol highlights the key points for successful microinjection into medaka embryos, an important technique for embryological and genetic analysis using medaka and zebrafish in a laboratory.
Due to the hard chorion and soft embryos, manipulation of medaka embryos is more involved than in zebrafish. This video shows step-by-step procedures for how to manipulate medaka embryos, including dechorionation, mounting in agarose for imaging and cell transplantation for the production of chimeras. These procedures are essential to use medaka and zebrafish in a laboratory to take full advantage of their complementary features for the genetic dissection of vertebrate genome functions.
A general protocol for the study of invasion of host cells by a bacterial pathogen, focusing on Staphylococcus aureus and human endothelial cells.
We describe the use of styryl FM dyes to image synaptic vesicle recycling in functional nerve terminals. This protocol can be applied not only to evoked, but also spontaneous and miniature synaptic activities. The protocol expands the variety of synaptic events that can be effectively evaluated.
This introductory level protocol describes the reagents, equipment, and techniques required to complete immunohistochemical staining of rodent brains, using markers for microglia and neuronal elements as an example.
The functional behavior of cells in culture can be improved by culturing in more in vivo-like 3-dimensional culture environments16-21. This manuscript describes the set-up and operation of a hollow fiber bioreactor system for in vivo-like mammalian tissue culture.
Here we present a protocol for live-imaging wound repair and the associated inflammatory response at high spatio-temporal resolution in vivo. This method utilizes the pupal stage of Drosophila development to enable long-term imaging and tracking of specific cell populations over time and is compatible with efficient RNAi-mediated gene inactivation.
Here, we present a protocol to freeze and section brain tissue from multiple animals as a timesaving alternative to processing single brains. This reduces staining variability during immunohistochemistry and reduces time cryosectioning and imaging.
An improved method to measure pollen hydration profiles in Arabidopsis thaliana is described here. The new method offers higher resolution, is noninvasive, and is highly reproducible. The protocol represents a new tool for a finer dissection of the processes that regulate the early stages of pollination.
关于 JoVE
版权所属 © 2024 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。