JoVE Logo

登录

4.10 : Protein Kinases and Phosphatases

Proteins undergo chemical modifications that trigger changes in the charge, structure, and conformation of the proteins. Phosphorylation, acetylation, glycosylation, nitrosylation, ubiquitination, lipidation, methylation, and proteolysis are various protein modifications that regulate protein activity. Such modifications are usually enzyme-driven.

Protein kinases

Many proteins in the cell are regulated by phosphorylation, the addition of a phosphate group. A family of enzymes called kinases adds phosphate groups to a protein substrate. Kinases phosphorylate their targets by transferring the terminal phosphate group of ATP (or GTP) to its substrate. Protein kinases belong to an extensive family of enzymes that share a catalytic domain of 290 amino acids. Within a protein, phosphorylation can occur on several different amino acids. Based on their target substrates, protein kinases can be classified as histidine kinases, serine-threonine kinases, and tyrosine kinases.

Phosphatases

Phosphatases reverse kinase activity by removing phosphate groups from their substrates through hydrolysis of phosphoric acid monoesters into a phosphate ion, leaving behind a free hydroxyl group. Protein phosphatases are structurally and functionally diverse and classified into four major groups depending on their catalytic mechanism, inhibitor sensitivity, and substrate preference. These categories include phosphoprotein phosphatases (PPP), phosphotyrosine phosphatases (PTP), Mg2+/Mn2+-dependent protein phosphatases (PPM), and aspartate-based protein phosphatases.

Activity and role of protein kinases and phosphatases

Protein kinases and phosphatases act as molecular switches. Some of these enzymes help maintain cellular homeostasis by sensing an optimum ATP:ADP ratio within cells. A reduced ATP:ADP reflects compromised energy status, triggering protein kinase activity. Protein kinases catalyze the phosphorylation of proteins, stimulating ATP-producing pathways. Conversely, protein phosphatases sense high ATP:ADP levels and catalyze the dephosphorylation of target proteins. Together these enzymes modulate critical pathways and processes in the cell, often in response to external stimuli.

Tags

Protein KinasesPhosphatasesPhosphorylationDephosphorylationEnzymePhosphate GroupAmino Acid ResidueProtein SubstrateConformational ChangesActivity RegulationATPSerineThreonineTyrosine ResiduesEukaryotic Protein KinasesHydrogen bonded NetworkThree dimensional Structure ModificationEnzymatic ActivitySubstrate InteractionHydrolysisWater Molecule

来自章节 4:

article

Now Playing

4.10 : Protein Kinases and Phosphatases

Protein Function

12.9K Views

article

4.1 : 配体结合位点

Protein Function

12.6K Views

article

4.2 : 蛋白质-蛋白质接口

Protein Function

12.4K Views

article

4.3 : 保守的结合位点

Protein Function

4.1K Views

article

4.4 : 平衡结合常数和结合强度

Protein Function

12.7K Views

article

4.5 : 辅因子和辅酶

Protein Function

7.2K Views

article

4.6 : 变构调节

Protein Function

13.9K Views

article

4.7 : 配体结合和键合

Protein Function

4.7K Views

article

4.8 : 协作变构转换

Protein Function

7.8K Views

article

4.9 : 磷酸化

Protein Function

5.9K Views

article

4.11 : GTP 酶及其调节

Protein Function

8.2K Views

article

4.12 : 共价连接的蛋白质调节因子

Protein Function

6.7K Views

article

4.13 : 具有可互换部分的蛋白质复合物

Protein Function

2.5K Views

article

4.14 : 机械蛋白功能

Protein Function

4.9K Views

article

4.15 : 结构蛋白功能

Protein Function

27.2K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。