登录

Master transcription regulators are regulatory proteins that are predominantly responsible for regulating the expression of multiple genes. Often these genes work in concert to drive a complex process. Activation of a master transcription regulator can lead to a cascade of transcriptional activation necessary for that outcome. These regulators can directly bind to the regulatory sequences of the various genes involved, or they can indirectly regulate transcription by binding to regulatory sequences of additional transcriptional regulators and induce their production. The expression of a particular phenotype in an organism is often under the control of one or two master transcription regulators. The significance of these regulators in the functioning of organisms and the expression of diseased phenotypes make them ideal targets for drug development research.

MEF2C is a master transcriptional regulator that is predominantly responsible for the development of breast cancer. It belongs to the Mef2 family of transcription activators responsible for cell differentiation and development. There are several characteristic features of MEF2C that demonstrate its function as a master transcription regulator. It consists of two DNA binding domains – Mef2 and MADS-box. The Mef2 domain is known for its high-affinity DNA binding and dimerization function. MEF2C also has binding sites for TEAD1, a co-regulator that is responsible for enhancing transcription; MAPK7, a transcription factor that regulates cell proliferation and differentiation; EP300, a transcription factor involved in regulation of cell growth and division; and several histone deacetylases, such as HDAC4, HDAC7, and HDAC9.

Experimental analysis has shown that MEF2C can directly regulate many genes responsible for the oncogenic phenotype. It can also indirectly regulate the phenotype by activating other transcription factors: 1896 genes and 2156 regulatory interactions at the second-order and 5852 genes and 18801 interactions at the third-order.

Tags
Master Transcription RegulatorsTranscription FactorsGene ExpressionCell DifferentiationCis regulatory SequencesMyoDMuscle Cell DifferentiationMuscle DevelopmentMyosin Heavy ChainDesminIndirect RegulationMyocyte specific Enhancer Factor 2Oct4Sox2Zfp206Embryonic Stem Cells

来自章节 10:

article

Now Playing

10.13 : Master Transcription Regulators

基因表达

6.6K Views

article

10.1 : 细胞特异性基因表达

基因表达

13.0K Views

article

10.2 : 表达调节发生在多个步骤

基因表达

21.6K Views

article

10.3 : 顺式调节序列

基因表达

9.4K Views

article

10.4 : 转录调节因子的协同结合

基因表达

6.1K Views

article

10.5 : 原核转录激活剂和阻遏剂

基因表达

20.0K Views

article

10.6 : 纵子

基因表达

15.0K Views

article

10.7 : 真核生物启动子区域

基因表达

15.8K Views

article

10.8 : 共激活因子和共阻遏因子

基因表达

7.0K Views

article

10.9 : 真核生物转录激活剂

基因表达

10.5K Views

article

10.10 : 真核生物转录抑制剂

基因表达

9.6K Views

article

10.11 : 组合基因对照

基因表达

8.0K Views

article

10.12 : 诱导多能干细胞

基因表达

3.4K Views

article

10.14 : 表观遗传调控

基因表达

23.9K Views

article

10.15 : 基因组印记和遗传

基因表达

32.2K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。