登录

This lesson provides an in-depth discussion of the stereochemical outcomes in an SN1 reaction.

In the first step of an SN1 reaction, the bond between the electrophilic carbon and the leaving group ionizes to generate the carbocation intermediate. The second step of the mechanism is the nucleophilic attack.

In the formed carbocation, the positively charged carbon is sp2 hybridized with a trigonal planar geometry. As all the three substituents lie on the same plane, a plane of symmetry for the carbocation is formed, making it achiral. Thus, a nucleophile can approach this symmetrical carbocation from either side with equal likelihood and rate.

The frontside attack leads to the retention of configuration, while a backside attack yields to an inversion of configuration in the product. However, in an achiral substrate, with either mode of attack, no difference in the product’s configuration is observed; in a chiral substrate, an optically inactive racemic mixture is expected.

Nevertheless, an enantiomeric excess with a predominantly inverted product is often observed because complete racemization cannot be achieved due to the ionization step. Upon ionization, the ions remain loosely associated, forming an intimate ion pair. During this period, the anion shields the carbocation from the frontside attack until they diffuse apart. Thus, the nucleophile is more prone to attack the unhindered backside resulting in products with an inversion of configuration. Once fully dissociated, both sides of the carbocation are available for substitution, and a racemic mixture of products is obtained. Thus, overall a net excess of inverted product is observed in an SN1 reaction.

Tags
SN1 ReactionStereochemistryElectrophilic CarbonLeaving GroupCarbocation IntermediateNucleophilic AttackSp2 HybridizedTrigonal Planar GeometryAchiralPlane Of SymmetryFrontside AttackRetention Of ConfigurationBackside AttackInversion Of ConfigurationOptically Inactive Racemic MixtureEnantiomeric Excess

来自章节 6:

article

Now Playing

6.13 : SN1 Reaction: Stereochemistry

烷基卤化物的亲核取代和消除反应

8.0K Views

article

6.1 : 烷基卤化物

烷基卤化物的亲核取代和消除反应

14.8K Views

article

6.2 : 亲核取代反应

烷基卤化物的亲核取代和消除反应

14.9K Views

article

6.3 : 亲核试剂

烷基卤化物的亲核取代和消除反应

12.4K Views

article

6.4 : 亲电试剂

烷基卤化物的亲核取代和消除反应

9.8K Views

article

6.5 : 离开组

烷基卤化物的亲核取代和消除反应

7.1K Views

article

6.6 : 碳化物

烷基卤化物的亲核取代和消除反应

10.5K Views

article

6.7 : SN2 反应:动力学

烷基卤化物的亲核取代和消除反应

7.7K Views

article

6.8 : SN2 反应:机理

烷基卤化物的亲核取代和消除反应

13.2K Views

article

6.9 : SN2 反应:过渡态

烷基卤化物的亲核取代和消除反应

9.0K Views

article

6.10 : SN2 反应:立体化学

烷基卤化物的亲核取代和消除反应

8.8K Views

article

6.11 : SN1 反应:动力学

烷基卤化物的亲核取代和消除反应

7.4K Views

article

6.12 : SN1 反应:机理

烷基卤化物的亲核取代和消除反应

11.0K Views

article

6.14 : 预测产品:SN1 与 SN2

烷基卤化物的亲核取代和消除反应

13.0K Views

article

6.15 : 消除反应

烷基卤化物的亲核取代和消除反应

12.4K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。