로그인

This lesson provides an in-depth discussion of the stereochemical outcomes in an SN1 reaction.

In the first step of an SN1 reaction, the bond between the electrophilic carbon and the leaving group ionizes to generate the carbocation intermediate. The second step of the mechanism is the nucleophilic attack.

In the formed carbocation, the positively charged carbon is sp2 hybridized with a trigonal planar geometry. As all the three substituents lie on the same plane, a plane of symmetry for the carbocation is formed, making it achiral. Thus, a nucleophile can approach this symmetrical carbocation from either side with equal likelihood and rate.

The frontside attack leads to the retention of configuration, while a backside attack yields to an inversion of configuration in the product. However, in an achiral substrate, with either mode of attack, no difference in the product’s configuration is observed; in a chiral substrate, an optically inactive racemic mixture is expected.

Nevertheless, an enantiomeric excess with a predominantly inverted product is often observed because complete racemization cannot be achieved due to the ionization step. Upon ionization, the ions remain loosely associated, forming an intimate ion pair. During this period, the anion shields the carbocation from the frontside attack until they diffuse apart. Thus, the nucleophile is more prone to attack the unhindered backside resulting in products with an inversion of configuration. Once fully dissociated, both sides of the carbocation are available for substitution, and a racemic mixture of products is obtained. Thus, overall a net excess of inverted product is observed in an SN1 reaction.

Tags
SN1 ReactionStereochemistryElectrophilic CarbonLeaving GroupCarbocation IntermediateNucleophilic AttackSp2 HybridizedTrigonal Planar GeometryAchiralPlane Of SymmetryFrontside AttackRetention Of ConfigurationBackside AttackInversion Of ConfigurationOptically Inactive Racemic MixtureEnantiomeric Excess

장에서 6:

article

Now Playing

6.13 : SN1 Reaction: Stereochemistry

친핵성 치환과 알킬 할라이드 반응 제거

8.0K Views

article

6.1 : 알킬 할리데스

친핵성 치환과 알킬 할라이드 반응 제거

14.8K Views

article

6.2 : 뉴클레오필성 대체 반응

친핵성 치환과 알킬 할라이드 반응 제거

14.9K Views

article

6.3 : 뉴클레오필

친핵성 치환과 알킬 할라이드 반응 제거

12.4K Views

article

6.4 : 전기 애호가

친핵성 치환과 알킬 할라이드 반응 제거

9.8K Views

article

6.5 : 그룹 탈퇴

친핵성 치환과 알킬 할라이드 반응 제거

7.1K Views

article

6.6 : 카보케이션

친핵성 치환과 알킬 할라이드 반응 제거

10.5K Views

article

6.7 : SN2 반응: 운동학

친핵성 치환과 알킬 할라이드 반응 제거

7.7K Views

article

6.8 : SN2 반응: 메커니즘

친핵성 치환과 알킬 할라이드 반응 제거

13.2K Views

article

6.9 : SN2 반응: 전환 상태

친핵성 치환과 알킬 할라이드 반응 제거

9.0K Views

article

6.10 : SN2 반응: 스테레오케미스케

친핵성 치환과 알킬 할라이드 반응 제거

8.8K Views

article

6.11 : SN1 반응: 운동학

친핵성 치환과 알킬 할라이드 반응 제거

7.4K Views

article

6.12 : SN1 반응: 메커니즘

친핵성 치환과 알킬 할라이드 반응 제거

11.0K Views

article

6.14 : 제품 예측: SN1 vs. SN2

친핵성 치환과 알킬 할라이드 반응 제거

13.0K Views

article

6.15 : 제거 반응

친핵성 치환과 알킬 할라이드 반응 제거

12.4K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유