登录

Alkenes undergo reduction by the addition of molecular hydrogen to give alkanes. Because the process generally occurs in the presence of a transition-metal catalyst, the reaction is called catalytic hydrogenation.

Metals like palladium, platinum, and nickel are commonly used in their solid forms — fine powder on an inert surface. As these catalysts remain insoluble in the reaction mixture, they are referred to as heterogeneous catalysts.

The hydrogenation process takes place on the surface of the metal catalyst. It begins with the adsorption of the hydrogen onto the metal surface, followed by the cleavage of the H–H bonds to give individual metal–hydrogen bonds. The alkene then complexes with the catalyst surface by using its p orbitals to overlap with the empty metal orbitals of the catalyst. The two hydrogen atoms then insert into the π bond sequentially through syn addition (addition to the same face of the π bond) to give the reduced product — the alkane. The alkane formed is no longer bound to the metal and diffuses away from the catalyst's surface.

The process of hydrogenation is exothermic. The heat released is called the heat of hydrogenation (ΔH°), and it helps predictthe relative stabilities of alkenes. For example, although the hydrogenation of both cis-2-butene and trans-2-butene gives the same product — butane, trans-2-butene is more stable than cis-2-butene. This can be explained based on the heat of hydrogenation of the two isomers. The cis isomer (ΔH°= −28.6 kcal/mol) has a slightly higher heat of hydrogenation compared to the trans isomer (ΔH°= −27.6 kcal/mol). In cis-2-butene, the steric repulsion between the two methyl groups lying on the same side of the double bond makes it less stable, which is reflected in its larger heat of hydrogenation.

Tags

ReductionAlkenesCatalytic HydrogenationMolecular HydrogenTransition metal CatalystPalladiumPlatinumNickelHeterogeneous CatalystsAdsorptionCleavageMetal hydrogen BondsAlkeneP OrbitalsMetal OrbitalsHydrogen AtomsSyn AdditionReduced ProductAlkaneExothermicHeat Of HydrogenationRelative Stabilities

来自章节 8:

article

Now Playing

8.14 : Reduction of Alkenes: Catalytic Hydrogenation

烯烃的反应

11.5K Views

article

8.1 : 亲电加成剂的区域选择性 - 过氧化物效应

烯烃的反应

8.0K Views

article

8.2 : 烯烃的自由基链式反应和聚合

烯烃的反应

7.3K Views

article

8.3 : 烯烃的卤化

烯烃的反应

14.8K Views

article

8.4 : 烯烃形成卤醇

烯烃的反应

12.4K Views

article

8.5 : 烯烃的酸催化水合

烯烃的反应

12.9K Views

article

8.6 : 酸催化水合的区域选择性和立体化学

烯烃的反应

8.2K Views

article

8.7 : 氧汞化 - 烯烃的还原

烯烃的反应

7.1K Views

article

8.8 : 硼氢化-烯烃的氧化

烯烃的反应

7.3K Views

article

8.9 : 硼氢化的区域选择性和立体化学

烯烃的反应

7.9K Views

article

8.10 : 烯烃的氧化:Syn 二羟基化与四氧化锇

烯烃的反应

9.5K Views

article

8.11 : 烯烃的氧化:Syn 二羟基化与高锰酸钾

烯烃的反应

10.2K Views

article

8.12 : 烯烃的氧化:过氧酸的抗二羟基化

烯烃的反应

5.2K Views

article

8.13 : 烯烃的氧化裂解:臭氧分解

烯烃的反应

9.5K Views

article

8.15 : 烯烃的还原:不对称催化加氢

烯烃的反应

3.2K Views

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。