登录

Contractile rings are composed of microfilaments and are responsible for separating the daughter cells during cytokinesis. Contractile ring assembly proceeds along with other cell cycle events; however, very few mechanistic details are known about the timing and coordination of the contractile rings with the cell cycle.

A small GTPase, RhoA, controls the function and assembly of the contractile ring. RhoA belongs to the Ras superfamily of proteins. The activation of formins by RhoA promotes actin filament formation, whereas the activation of multiple protein kinases by RhoA stimulates the myosin II assembly and contraction. The kinases phosphorylate the myosin light chain and stimulate filament formation and motor activity. In addition to actin and myosin II (actomyosin), septin filaments are also involved in contractile ring formation. Septin filaments stabilize the contractile ring and play an important role in yeast cytokinesis.

The activation of RhoA is regulated by a guanine nucleotide exchange factor (Rho-GEF). This protein is found in the cortex region, which is the site of future cell division. The inactive form of RhoA is bound to GDP. Rho-GEF exchanges the GDP bound to RhoA with GTP. The binding of GTP activates RhoA, which in turn triggers the formation of contractile rings.

RhoA also regulates the activity of the scaffold protein anillin, an essential player in contractile ring formation. While RhoA is considered the principal activator for the assembly of the contractile ring, anillin acts as the main organizer for the ring by binding with actin, myosin II, membrane phospholipids, septin, and other structural and regulatory components involved in contractile ring formation.

The continuous shrinkage of the contractile ring means it progressively needs a smaller number of actomyosin filaments to form a ring of the same thickness; therefore, concomitant disassembly of the actomyosin filaments occurs as the ring contracts. During the final stages of the cytokinesis, the contractile ring and the central spindle containing compact microtubules matures to form the midbody and the midbody ring. The midbody ring then carries out the abscission of the parent cell, resulting in the formation of two daughter cells.

Tags

Contractile RingMicrofilamentsCytokinesisGTPaseRhoARas SuperfamilyForminsActin Filament FormationProtein KinasesMyosin II AssemblyMyosin Light Chain PhosphorylationSeptin FilamentsGuanine Nucleotide Exchange Factor Rho GEFGDPGTPAnillinScaffold Protein

来自章节 18:

article

Now Playing

18.14 : The Contractile Ring

Cell Division

6.1K Views

article

18.1 : 有丝分裂和胞质分裂

Cell Division

20.3K Views

article

18.2 : 染色质结构的复制

Cell Division

5.2K Views

article

18.3 : 黏连蛋白

Cell Division

4.2K Views

article

18.4 : 凝聚素

Cell Division

3.2K Views

article

18.5 : 有丝分裂纺锤体

Cell Division

6.1K Views

article

18.6 : 中心体复制

Cell Division

3.8K Views

article

18.7 : 微管不稳定

Cell Division

4.9K Views

article

18.8 : 主轴组件

Cell Division

3.4K Views

article

18.9 : 姐妹染色单体的附着

Cell Division

3.0K Views

article

18.10 : 作用在染色体上的力

Cell Division

3.2K Views

article

18.11 : 姐妹染色单体的分离

Cell Division

3.5K Views

article

18.12 : 主轴组件检查点

Cell Division

3.1K Views

article

18.13 : 后期 A 和 B

Cell Division

3.8K Views

article

18.15 : 确定细胞分裂平面

Cell Division

3.1K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。