サインイン

Contractile rings are composed of microfilaments and are responsible for separating the daughter cells during cytokinesis. Contractile ring assembly proceeds along with other cell cycle events; however, very few mechanistic details are known about the timing and coordination of the contractile rings with the cell cycle.

A small GTPase, RhoA, controls the function and assembly of the contractile ring. RhoA belongs to the Ras superfamily of proteins. The activation of formins by RhoA promotes actin filament formation, whereas the activation of multiple protein kinases by RhoA stimulates the myosin II assembly and contraction. The kinases phosphorylate the myosin light chain and stimulate filament formation and motor activity. In addition to actin and myosin II (actomyosin), septin filaments are also involved in contractile ring formation. Septin filaments stabilize the contractile ring and play an important role in yeast cytokinesis.

The activation of RhoA is regulated by a guanine nucleotide exchange factor (Rho-GEF). This protein is found in the cortex region, which is the site of future cell division. The inactive form of RhoA is bound to GDP. Rho-GEF exchanges the GDP bound to RhoA with GTP. The binding of GTP activates RhoA, which in turn triggers the formation of contractile rings.

RhoA also regulates the activity of the scaffold protein anillin, an essential player in contractile ring formation. While RhoA is considered the principal activator for the assembly of the contractile ring, anillin acts as the main organizer for the ring by binding with actin, myosin II, membrane phospholipids, septin, and other structural and regulatory components involved in contractile ring formation.

The continuous shrinkage of the contractile ring means it progressively needs a smaller number of actomyosin filaments to form a ring of the same thickness; therefore, concomitant disassembly of the actomyosin filaments occurs as the ring contracts. During the final stages of the cytokinesis, the contractile ring and the central spindle containing compact microtubules matures to form the midbody and the midbody ring. The midbody ring then carries out the abscission of the parent cell, resulting in the formation of two daughter cells.

タグ

Contractile RingMicrofilamentsCytokinesisGTPaseRhoARas SuperfamilyForminsActin Filament FormationProtein KinasesMyosin II AssemblyMyosin Light Chain PhosphorylationSeptin FilamentsGuanine Nucleotide Exchange Factor Rho GEFGDPGTPAnillinScaffold Protein

章から 18:

article

Now Playing

18.14 : The Contractile Ring

細胞分裂

6.1K 閲覧数

article

18.1 : 有糸分裂と細胞質分裂

細胞分裂

20.3K 閲覧数

article

18.2 : クロマチン構造の複製

細胞分裂

5.2K 閲覧数

article

18.3 : コヒーシン

細胞分裂

4.2K 閲覧数

article

18.4 : コンデンシン

細胞分裂

3.2K 閲覧数

article

18.5 : 有糸分裂スピンドル

細胞分裂

6.1K 閲覧数

article

18.6 : 中心体の重複

細胞分裂

3.8K 閲覧数

article

18.7 : 微小管の不安定性

細胞分裂

4.9K 閲覧数

article

18.8 : スピンドルアセンブリ

細胞分裂

3.4K 閲覧数

article

18.9 : 姉妹染色分体のアタッチメント

細胞分裂

3.0K 閲覧数

article

18.10 : 染色体に作用する力

細胞分裂

3.2K 閲覧数

article

18.11 : 姉妹染色分体の分離

細胞分裂

3.5K 閲覧数

article

18.12 : スピンドル組立チェックポイント

細胞分裂

3.1K 閲覧数

article

18.13 : 後期AおよびB

細胞分裂

3.8K 閲覧数

article

18.15 : 細胞分裂の平面の決定

細胞分裂

3.1K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved